

........................ 1

......................... 3

.............................. 3

.............................. 3
1 4

............................. 4

............................. 4
1 5

......................... 7

.............................. 7
............................. 9

...................... 10

........................... 10
............................ 12
........................... 13
........................... 14
........................... 16
........................... 18
............................ 21
........................... 25
............................ 28
........................... 29

14.4.11. Recipe Operation ... 30
14.4.12. Communication Operation... 31
14.4.13. System Service... 32
14.4.14. Screen Operation ... 33
14.4.15. File Operation .. 34
14.4.16. Comparison.. 40
14.4.17. String Operation... 41
14.4.18. Run Operation.. 49
14.4.19. Print Operation... 50
14.4.20. Sound Operation .. 52

CHAPTER 14

14.1. Types of Macros ..

14.2. Working with Macros..
14.2.1. Creating Macros...
14.2.2. Opening and Closing Macros ..
4.2.3. Naming a macro...

14.2.4. Deleting a macro...
14.2.5. Saving and Exporting Macros ..
4.2.6. Macro Settings in the Dialog ..

14.3. Writing Macros..
14.3.1. Macro Editor Window ...
14.3.2. Macro Command Properties Tool Window

14.4. Macro Commands and Examples
14.4.1. Macro Notations and Terminology ...
14.4.2. Data Transfer ...
14.4.3. Arithmetic Operation ..
14.4.4. Logical Operation ...
14.4.5. Calculation..
14.4.6. Data Conversion ...
14.4.7. Conditional Operation ...
14.4.8. Program Control ...
14.4.9. Timer Operation...
14.4.10. Keypad Operation...

USING MACROS

4 14

14-1 CHAPTER 14 USING MACROS

This ch quence of macro commands
and act as a simple computer program when it is run. With macros, some tasks that are hard to be performed by the
objects can be easily achieved, such as scheduling, data exchanges, conditional operations, and sequential operations.

Note: Do not use macros to control systems that can cause life-threatening and serious injury.
Note: The real-time OS in the HMI needs to manage multiple tasks at the same time when the application is running. In

order to not affect the whole performance, please keep the macro as short as possible.
Note: Macros execute individually and are unaware of other macros. When sharing common variables between macros,

your application may have possible conflicts. Consider an application where the cycle macro updates the value of an
address which is used by the event macro. If the event macro alters the address value before the cycle macro uses
that address, the result of the cycle macro will be incorrect.

14.1. Types of Macros

■ Global Macro
A global macro is a macro that can be used by all panel applications in the same project. With global macros, the panel
applications in the same project can share common functions without having to keep and maintain the same set of macros
locally.

You can set up a password in the Project Information & Protection dialog box to protect global macros. If global macros are
under protection, you need to enter a password to remove the protection before using them in your application.

Note that only internal variables can be used in global macros.

■ Local Macro
A local macro is a macro that can only be used by the panel application which the macro is located in.

■ Sub-macro
A sub-macro is a macro that can be run by other macros using the CALL command. When a CALL command is
encountered while running a macro, that macro stops running, and the sub-macro starts to run. The last command of a
sub-macro must be a RET command which terminates the sub-macro and returns control to the calling macro. You can
place RET commands at any location you want. The HMI will resume the execution of the calling macro starting with the
command following the CALL command once the called sub-macro terminates.

By implementing common functions in sub-macros for other macros to use, your macros can be modularized, are sharable,
easy to read, and easy to maintain.

■ Startup Macro, Main Macro, Event Macro, Time Macro for the application
■ Open Macro, Cycle Macro, Close Macro for the screen
■ On Macro, Off Macro, Object Macro for the object

Select the macro that works best for the occasion you want the macro to run, and for the purpose you want the macro to
do.

a
s
pter explains how you can write macros to perform operations. A macro contains a se

Run the Macro: Use:
When the application starts Startup Macro

This macro is run only once when the application starts. The HMI will not display the
start-up screen until the macro terminates. You can use Startup Macro to initialize
global data and settings for your application. Specify Startup Macro in Panel General
Setup dialog box.

While the application is
running

Main Macro
This macro is run all the time while the application is running. The HMI runs Main
Macro cyclically, i.e. it will delay preset time to run Main Macro starting from the first
command again each time after it completes the processing of the last command of
the macro or when it encounters an END command in the middle of the macro.
Specify Main Macro in Panel General Setup dialog box.

Continued

14

14-2 CHAPTER 14 USING MACROS

Run the Macro: Use:

When a specific trigger bit
changes from 0 to 1

Event Macro
An Event Macro is run whenever the associated trigger bit chan
(on). An application can have up to four Event Macros which are
4. Specify Event Macros in the Panel Ge

ges from 0 (off) to 1
 numbered from 1 to

 neral Setup dialog box.
P
in application can have

s which are numbered from 1 to 4. Each Time Macro has a
different set of time interval options you can choose to specify how often you want the
macro to run. Specify Time Macros in the Panel General Setup dialog box.

eriodically with a preset time
terval

Time Macro
A Time Macro is run periodically with a preset time interval. An
up to four Time Macro

When a specific screen is Open Macro
 opened. The screen
the Open Macro of a

screen in the Screen Properties dialog box.

being opened An Open Macro is run once when the associated screen is being
will not be displayed until the Open Macro terminates. Specify

While a specific screen is
open

Cycle Macro
n all the time while the associated screen iA Cycle Macro is ru

Macros runs cy
s open. The Cycle

clically, i.e. the Cycle Macro will run starting from the first command
again every time after it completes the processing of the last command of the macro,

the middle of the macro. The Cycle
Macro terminates immediately when the screen is closed. Specify the Cycle Macro of

or when an END command is encountered in

a screen in the Screen Properties dialog box.
When a specific screen is
being closed

Close Macro
A Close Macro is run once when the associated screen is bein
will not be erased until the Close Macro terminates. Specify t
screen in the Screen Properties dial

g closed. The screen
he Close Macro of a

og box.
When a specific button is
pressed or released to set

On Macro
a An On Macro is run once when the associated button is pressed or released to set a

e bit will not be performed until the On Macro terminates.
 is important to keep the On Macro as short as possible in order to not

 setting of the bit. Both the Bit Buttons and the Toggle Switches can have an
figuration dialog box.

bit to on bit to 1 (on). The setting of th
Therefo
delay the

re, it

On Macro. Specify the On Macro of a button in that button’s con
When a specific button is
pre d to set a

Off Macro
An Off Macro is run onc n the associated button is pressed or released to set a

0 (off). The setting of the bit will not be performed until the Off Macro terminates.
 order to not delay the
 have an Off Macro.

g box.

ssed or release
bit to off

e whe
bit to
So it is important to keep the Off Macro as short as possible in
setting of the bit. Both Bit Buttons and Toggle Switches can
Specify the Off Macro of a button in that button’s configuration dialo

When a specific ob
activa

ject is
ted to perform a sp

operation

ject Macro
activated to perform a
fter the operation is
at can have an Object

n Buttons, and Keypad Buttons. Specify the
Object Macro of an object in that object’s configuration x.

ecific An Object Macro is run once when the associated object is
specific operation. Whether the macro is run before or a
performed depends on the type of the operation. The objects th
Macro include Screen Buttons, Functio

Ob

 dialog bo

4 14

14-3 CHAPTER 14 USING MACROS

ing w

. Creating M
■ Creating a new and bla

 menu, or right-click the Global >
m in cro…

nd on the pop-

To create a local mac anel > Macro menu, or right-click the panel application >
he P ger tool window to bring out the pop-up menu and then use the Add Macro…

and on the pop-
2) In the New Macro dial button to validate your

choice.

m

rt a macro as ct Manager tool window
to bring out the pop-up u.

o as cro, right-click the panel application Macros item in the Project Manager tool window
-up u

k the *.mcr or *.txt that was saved in a
different folder, locate

3) Click Open.

14.2.2. Opening an
■ Opening an existing ma

 s u want to open in Project > Global Macro > Edit menu, or double click the
a settings of the object

n dialog, select rop-down list.
To open a local macro, sel le click the macro in the
panel application > Macros acro settings of the object configuration
dialog. If global macros exist, select the macro that is located from the beginning to "--------------Global-----------" item in the
drop-down list or select the macro in the drop-down list.

■ Opening a *.txt or *.mcr file within the macro editor window:
You may do the drag-and-drop operation:
1) Open the macro editor window by clicking any of the existing macros.
2) Drag a selection of *.mcr file or *.txt file into the macro editor window and drop it.
Note: Any macros in the macro editor window will be replaced by macros from the source file.

■ Closing Macro Editor Windows:
To close a single window, select the window and click the close button.

To close all windows, choose Windows... on the Window menu, select all the macro editor windows you want to close in
the window dialog and then click Close Window(s) button.
Note: The Macro Command Properties Window will be closed automatically when the macro editor window is closed. Even
if the macro editor window is closed, all the changes will be saved, unless the software exits without saving any changes to
the file.

■ Closing Macro Command Properties Window:
To close the macro command properties window, click the close button on the Macro Command Properties window or
check/uncheck the Macro Command Properties command on the View menu

14.2. Work ith Macros

14.2.1 acros
nk macro

cro, use the Add… command on the Project > Global Macro1) To create a global ma
Global Macros ite
comma

 the Project Manager tool window to bring out the pop-up menu and then use the Add Ma
up menu.

ro, use the Add… command on the P
Macros item in t
comm

roject Mana
up menu, or
og box, type the name you want, and hit the ENTER key or click the OK

acro as a copy macro ■ Importing an existing

1) To impo a global macro, right-click the Global > Global Macros item in the Proje
 menu and then use the Import Macro… command on the pop-up men

To import a macr
to bring out the pop

2) Clic

a local ma
 menu and then use the Import Macro… command on the pop-up men

 file you want to create a new macro from. If you want to open a macro
 and open the folder first.

d Closing Macros
cro

To open a global macro,
macro in Global > Glob
configuratio

elect the macro yo
l Macros item in the Project Manager tool window, or in the Macro
 the macro that is located after "--------------Global-----------" item in the d

ect the macro you want to open on Panel > Macro > Edit menu, or doub
 item in the Project Manager tool window, or in the M

14

14-4

CHAPTER 14 USING MACROS

on, you need to specify the macro name with the

14.2.3. Naming a macro
r global use or for the panel applicatiWhen adding a new macro fo

following dialog.

Specify the macro name here. The
maximum length for a macro name is 256
characters. Macro names are case
insensitive. For example, the names TURN

d to be the

ON and turn on are considere
same.

l application, the local macro name has to be unique, but a local macro name can be the same as a global

er:

u would like to rename
 second menu item.

nd then press the ENTER key.

w:
like to delete

p-u menu"; and then click Delete, the third menu item.

■ Deleting a macro by menu
acro sub-menu, and select the macro you want to delete on

e on the

elete at a time. If the macro you want to delete is used by an application or object,

14.2.5. Saving and Exporting Macros
If you have a macro you want to reuse in another application panel, you can export the macro as a .txt file or a .mcr file.
You may do the following:
1) Locate the macro you would like to export
2) Right-click on the macro to display the macro item's "pop-up menu"; and then click Export Macro..., the fourth menu

item.
3) If you want to save a macro in a different folder, locate and open the folder first, then click Save.

When importing a file as the macro, the file name will be the macro name as the default.
In each pane
macro name.

■ Renaming a macro from Project Manag
1) Locate the macro yo
2) Right-click on the macro to display the macro item's pop-up menu; and then click Rename, the
3) Once the macro name is selected, simply type the new name over the selected text, a

14.2.4. Deleting a macro
■ Deleting a macro from Project Manager tool wido
1) Locate the macro you would
2) Right-click on the macro to display the macro item's "po p

To delete a global macro, choose Project menu, click Global M
the Delete sub-menu
To delete a local macro, choose Panel menu, click Macro sub-menu, and select the macro you want to delet
Delete sub-menu

Note: You can only select one macro to d
you will be asked to confirm the delete operation.

4 14

14-5

14.2.6. Macro Settings in the Dialog
Y age. ou can open and edit a specified macro or create a new macro in the configuration dialog that contains the macro p
The following is an example of the Macro page in the Bit Button configuration dialog.

neral page.

The following table describes each property in the Ge

Property Description
Macro Name Select an existing local macro or global macro from t

sample in the dropdown list
he drop-down list. The following is a

CHAPTER 14 USING MACROS

New… Click the button to bring out the New Macro dialog box to create a new and blank local macro.

Continued

Local Macros

A separator that is used to
separate the local macros
and global macros. It shows
only when global macros
exist.

Global Macros

14

14-6 CHAPTER 14 USING MACROS

Property Description

Macro Editor
Window

Write and edit the macros here. For details, see Section 14.3.1. If the
small, you may drag out the window and

editor window is too
 resize it. To drag and move the window, left-click

anywhere on the window frame and hold down the button, then drag the mouse to move the
window outside to another area. It will “float” over the rest of the dialog, allowing you to position
it wherever you want it to be. Release the mouse button to let go of the window. Click on the
resized tabs located at the bottom right corner of the window to resize the window. Press the
close button to dock the window back into the dialog. The following is a sample of the floating
macro editor window.

Click anywhere on
the window frame to
drag out the window.

Properties A floating dialog allows you specify the macro command. For details, see Section 14.3.2. The
s dialog can be moved anywhere and resized to any size you want.

However, it can’t be closed log is closed.
macro command propertie

 until the dia

Click the close button
to dock the window
back into the dialog.

Click here to resize
the window.

4 14

14-7

14.3. Writin

In the software, all osed of two elements:
the Macro Editor W ro Command Properties Tool Window.

You will see the following sample of the Macro Development Environment when opening a macro from Project Manager.

g Macros

the macros can be written in the macro development environment that is comp
indow and the Mac

Macro Command
roperties Tool WindowMacro Editor Window P

14.3.1. Macro Editor Window
The macro editor is a text-based editor with syntax coloring and line numbering. Line numbering in the left margin of the
page helps you refer to the specific position of the macro. Syntax coloring gives you visual cues about the structure by
using different colors for various elements, such as keywords in black, comments in green, addresses in blue and
constants in red.

■ Editing Macro

With the macro editor, you can cut, copy, and paste selected text using menu commands, key combinations or
drag-and-drop operations. You can also undo and redo selected editing actions.

You can right-click to display a pop-up menu of editing commands. The editing commands available depend on what the
pointer is pointing to.

CHAPTER 14 USING MACROS

14

14-8 CHAPTER 14 USING MACROS

The macro editor allows the following editing actions:
ting, and deleting selection of lines, multiple lines or text

g actions
• Using drag-and-drop editing to move or copy a selection of text within one macro editor window, or between macro

• Cutting, copying, pas
• Undoing and redoing editin

editor windows.

The following table shows the supported editing commands.

Menu Command Key Combination Description
Cut CTRL+X Removes selected text fro r window. m the active macro edito
Copy CTRL+C Duplicates selected text in the active macro editor window.
Paste CTRL+V Pastes cut or copied text into an active macro editor window.
 DELETE Deletes text without copying it to the Clipboard.
Undo CTRL+Z Reverses the last editing action.
Redo CTRL+Y Reapplies the prior editing that has been undone.
 CTRL+A Selects all texts in the active macro editor

Note that all editing commands require a selection in order to work. Some commands can make a selection based on the
current cursor location.

■ Using Comments in Macros

Comments are notes to be ignored when running the macro commands. Macro supports both single-line comments and
block comments. Single-line comments begin with two forward slashes (//) and run to the end of the line.
The following is an example of a macro command followed by a single-line comment.
IF $U0.0 (B) // Key Down

Block comments begin with an opening delimiter (/*) and run to a closing delimiter (*/). Comments do not nest.
The following is an example of a block comment.
/* $N1001=WH2021
 $N1010=$N1001 */

os

alid hexadecimal
 are valid hexadecimal

mber, use either the b or B suffix. For example, 001100111b and 11110000B are valid binary

s. However, ambiguity
 has a link to a Modicon

impossible to tell whether the number 40001 is a constant or a word address of the controller. To
avoid this kind of ambiguity, use the following methods to explicitly declare that a number is a constant:

1) Use K, k, D, or d suffix for an integer number. For example, -123K and -123d are valid specifications of constant -123.
2) Use either the f or F suffix for a decimal number with decimal point. For example, -12.3F and -12.3f are valid

specifications of constant -12.3.

■ Specifying Constants in Macr

To specify a hexadecimal number, use either the h or H suffix. For example, 12abH and 3ABh are v
numbers. You can also use either the “0x” or “0X” prefix. For example, 0x1278abc and 0XFFFF0000
numbers.

To specify a binary nu
numbers.

For decimal numbers, in most cases, you just type the numbers as they are to specify the constant
exists when a constant is the same as a valid external variable. For example, if a panel application
ModBus slave device, it is

4 14

14-9

14.3.2. Macro Command Properties Tool Window

elp you add and modify a macro command quickly and easily.

u open a ma Project Man dow will be opened as a docking
w. You can nfigure the ed or hide, or tab link with other tool
ws, or dock the edges, can also choose to open or close

e Macro Command Properties Tool d Properties] menu item under [View] menu.

 open the m an object' erties Tool Window will float beside the
o Editor and can be moved anywh

The Macro Command Properties Tool Window h

If yo cro from ager or Menu Item, the Macro Properties Tool Win
windo easily co dockable tool window to automatically be display
windo against or float over. When the Macro Editor is opened, you
th Window by clicking the [Macro Comman

If you
acr

acro from s configuration dialog box, the Macro Prop
M ere, but it can't be closed.

The following table describes each property in the macro command properties tool window.

Property Description
Command Click the dropdown list box to bring up the macro command selection dialog. In the dialog,

 the
e selected macro command will be

log is closed. To cancel the operation, click
anywhere outside the macro command selection dialog.

navigate the keyword of macro commands through tabs and sections by moving
mouse and then clicking the selection. The format of th
shown in the dropdown list after the dia

Data Type Selects th
command

e data type of the macro command from the dropdown list. Different macro
s support different data types. The supported data types for each macro

command are some of the following: (S) 16-bit Signed, (U) 16-bit Unsigned, (SD) 32-bit
Signed, (UD) 32-bit Unsigned, (F) 32-bit Floating Point, (B) Bit.

<Edit

CHAPTER 14 USING MACROS

Box> Specifies the word variable when the Data Type is (U)/(S).
Specifies the double-word variable when the Data Type is (UD)/(SD)/

Specifies the bit variable when the Data Type is (B).

(F).

Parameter

 the Variable field.
Click this icon to bring up the Address Input Keypad and specify the desired address for

 Variable field.
Click this icon to bring up the Select Tag dialog box and select the desired tag for the

Macro Command Help Shows the operation and parameter type of the selected macro command.

Note that any modification in the dialog will change the current macro command in the Macro Editor.

14

14-10 CHAPTER 14 USING MACROS

les

ns.

r a macro command can accept for a specific
co arameter.

14.4. Macro Commands and Examp

14.4.1. Macro Notations and Terminology
The following notations and terminology will be used in the Macro Commands and Examples sectio

■ Notations

1) P1, P2, P3, P4, P5: Parameters of macro commands.
2) I, E, C, A, CS, M, AE, CE: Used to indicate the type of paramete

mmand p

Abbreviation Parameter Type
I Internal Variable
E External Variable
C Constant
A ASCII character string
CS Character string of the program label
M Sub-macro name
AE Arithmetic expression
CE expression Comparison

3) U, S, UD, SD, F, B: Used to indicate the types of data a macro command can support.

Abbreviation Data Type
U 16-bit Unsigned Integer
S 16-bit Signed Integer
UD 32-bit Unsigned Integer
SD 32-bit Signed Integer
F 32-bit Floating Point
B Bit

■ Terminology

Terminology Definition
Internal memory The memory space in the HMI that can be accessed by the panel application. For example,

the user memory $U, the non-volatile memory $N, the system memory $S, and the recipe
memory $R are all parts of the internal memory.

Internal variable An address or a tag referring to an address of a space in the internal memory.
Internal bit variable An internal variable that refers to a bit in the internal memory.

For ease of reading, “internal variable” is used instead of “internal bit variable” when referring
to a bit if there is no ambiguity.

Internal word variable An internal variable that refers to a word in the internal memory.
The variables can also be used to refer to a double-word, a block of bytes (byte array), a block
of words (word array), and a block of double-words (double-word array).

For ease of reading, “internal variable” is used instead of “internal word variable” when
referring to a word or a block of memory space if there is no ambiguity,

External memory The memory space or collection of addressable devices in the controllers that can be
accessed by the panel application through communication links.

Continued

4 14

14-11 CHAPTER 14 USING MACROS

Terminology Definition
External variable An address or a tag referring to an address of a space in the external memory.
External bit variable An external variable that refers to a bit in the external memory.

For ease of reading, “external variable” is used instead of “external bit variable” when referring
guity. to a bit if there is no ambi

External word
variable

An external variable that refers to a word in the external memory.
The variables can also be used to refer to a double-word, a block of bytes (byte array), a block

 (word array), and a block of double-words (double-word array) if the access unit of
ciated addresses is word. If the access unit is double-word, you can only use the
to refer to a double-word or a block of memory space with a length of a multiple of 4

reading, “external variable” is used instead of “external word variable” when
lock of memory space if there is no ambiguity,

of words
the asso
variable

ytes). (b

For ease of
referring to a word or a b

Expression
Type Abbreviation Description

Arithmetic
Expression used for co

AE Sequences of operators and parameters that are
mputing a value from the parameters.

Comp
Ex

arison

CE Sequences of operators and parameters that are
used for comparing value from the parameters. pression

The software provides the following types of operators for macro expressions:

Operators Name or Meaning Grouping Used for
() Parentheses Left to right AE/CE
* Multiplication Left to right
/ Division Left to right
% Modulus Left to right
+ Addition Left to right
- Subtraction Left to right
<< Left shift Left to right
>> Right shift Left to right

AE

< Less than Left to right
> Greater than Left to right
<= Less than or equal to Left to right
>= Greater than or equal to Left to right
== Equality Left to right
!= Inequality Left to right

CE

& Bitwise AND Left to right
^ Bitwise exclusive OR Left to right
| Bitwise inclusive OR Left to right

AE

&& Logical AND Left to right CE
|| Logical OR Left to right CE
= Assignment Right to left AE/CE

Note: The above table lists the operators in order of precedence (from highest to lowest
precedence). Operators in the same segment of the table have equal precedence and are
evaluated in the given order in an expression unless explicitly forced by parentheses.

14

14-12 CHAPTER 14 USING MACROS

ta T

Assignment (=)

14.4.2. Da ransfer

Format P1 = P2 Data Type U/S/UD/SD/F/B
Function Assigns the value of P2 to P1.
P1 (I/E) The destination.
P2 (I/E/C/AE) source.The
Example 1 $U2 = 123.45 (F) /* Assign 123.45 to $U2 (and $U3) */
Example 2 $U100.f = 1 (B) /* Turn on the specified bit */
Example 3 W ($U30 000) / 2 (SD) /* Write the result of the arithmetic expression to W60. */ 60 = + $W50 - 1
Example 4 M0 (B) of link 1*/ V0.0 = 2\ /* Assign the bit value of M0 of link 2 to the bit V0.0

Logical NOT (= !)

Format P1 = ! P2 Data Type B
Function P2 and in P1. Reverses saves the result

P1 (I/E) sult. The location to save the re
P2 (I/E) ranThe ope d.
Example 1 U2.3 = !$U * If $U3.4 is 1 (On), (Off) */ $ 3.4 (B) / $U2.3 is 0

" "

Format = "P2" P1
Function es the CII character strin Note that the string is a null terminated string.

N then N+1 b copied to P1 and the last byte is 0.
Copi quoted AS g P2 to P1.
If the length of the string is ytes will be

P1 (I) e location . Th to save the result
P2 (A) e quoted g. Th ASCII character strin
Example 1 U60 = "TE null character (00 oved to the low byte of $U62 */ $ ST" /* The h) will be m
Example 2 U20 = "AB null character (0 moved to the high byte of $U22 */ $ CDE" /* The 0h) will be

MOV

Format = MOV(PP1 2,P3) Data Type U
Function es P3 w to P1. Copi ords of P2
P1 (I/E) The starting location of the memory to receive the copy.
P2 (I/E) The starting location of the memory to be copied.
P3 (I/C) The number of words to be copied.
Example 1 $U100 = MOV($U200, 16) /* Copy the 16 words starting from $U200 to $U100 */
Example 2 W60 = MOV($U200, $U2) /* Copy the word array starting from $U200 with the size specified in

$U2 to W60.*/
Example 3 $U10 = MOV(2\D100,10) /* Copy D100 ~ D109 of link 2 to $U10 ~ $U19.*/

4 14

14-13 CHAPTER 14 USING MACROS

SETM

Format = SETM(P2,P3) P1 Data Type U
Function to word value P2. Sets P3 words of P1
P1 (I/E) The starting location of the memory to be set.
P2 (I/C) The set value or the location that holds the set value.
P3 (I/C) The number of words to be set. The max. no. of words are 512.
Example 1 $U100 = SETM(0, 16) /* Set the 16 words starting from $U100 to 0. */
Example 2 tarting from W60 with the size

specified in $U2 to the value of $U200.*/
W60 = SETM($U200, $U2) /* Set the words of the word array s

14.4.3. Arithmeti

n

c Operation

Additio (+)

Format P1 = P2 + P3 Data Type U/S/UD/SD/F
Function Adds P2 and P3 and saves the result in P1.

P1 (I/E) The location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 1 2 (U) $U100 = $U101 + $U 0
Example 2 W100 = 0.3*$U0 + 0.1*$U2 + 0.6*$U4 (F)

Subtraction (-)

Format P1 = P2 - P3 Data Type U/S/UD/SD/F
Function from 2 and saves the resulSubtracts P3 P t in P1.

P1 (I/E) The location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 (U) $U100 = $U101 - $U102

Example 2 W100 = 0.3*$U0 - 10.75 (F)

Multiplication (*)

Format P1 = P2 * P3 Data Type U/S/UD/SD/F
Function Multiplies P2 by P3 and saves the product in P1.

P1 (I/E) The location to save the product. If the product overflows, the higher bits exceeding the limit will
be truncated and the remaining bits will be stored in P1.

P2,P3 (I/E/C/AE) The operands.
Example 1 $U100 = $U102 * 0x192
Example 2 W100 = ($U0 + $U2) * ($U4 + $U6) (F)

14

14-14 CHAPTER 14 USING MACROS

n (/) Divisio

Format P1 = P2 / P3 Data Type U/S/UD/SD/F
Function nt in P1. Divides P2 by P3 and saves the quotie

P1 (I/E) The location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U100 = $U101 / $U102 (U)

Example 2 W100 = ($U0 + $U2) / ($U4 + $U6) (F)

Modulus (%)

Format P1 = P2 % P3 Data Type U/S/UD/SD
Function ainder Divides P2 by P3 and saves the rem in P1.

P1 (I/E) the result. The location to save
P2,P3 (I/E/C/AE erands.) The op
Example 1 6(U) $U100 = $U30 % 1
Example 2) (SD) W100 = $U200 % ($U402 + $U106

14.4.4. Logical Operation

Bitwise Inclusive OR (|)

Format P1 = P2 | P3 Data Type U/UD/B
Function nclusive OR operation of P2 and P3 and saves the results in P1. Performs bitwise I

P1 (I/E) The location to save the result.
P2,P3 (I/E/C) The perands o
Example 1

1100001111b */
W60 = 1111000000001111b
$U100 = 0000111100001111b | W60 (U) /* The value of $U100 is 111111

Example 2 B15 = $U1.2
Otherw

 | B14 (B) /* If either $U1.2 or B14 has a value of 1(On), B15 has the value 1(On).
ise, B15 has the value 0(Off)*/

Bitwise AND (&)

Format P1 = P2 & P3 Data Type U/UD/B
Function Performs bitwise AND operation of P2 and P3 and saves the results in P1.

P1 (I/E) The location to save the result.
P2,P3 (I/E/C) The operands
Example 1 W60 = 1111000000001111b

$U100 = 0000111100001111b & W60 (U) /* The value of $U100 is 0000000000001111b */
Example 2 B15 = $U1.2 & B14 (B) /* If both $U1.2 and B14 are 1(On), B15 is set to 1(On). Otherwise B15 is

set to 0(Off) */

4 14

14-15 CHAPTER 14 USING MACROS

Bitwise Exclusive OR (^)

Format P1 = P2 ^ P3 Data Type U/UD/B
Function Performs bitwise Exclusive OR operation of P2 and P3 and saves the results in P1.

P1 (I/E) The location to save the result.
P2,P3 (I/E/C) The operands
Example 1 W60 = 1111000000001111b

$U100 = 0000111100001111b ^ W60 (U) /* The value of $U100 is 1111111100000000b.*/
Example 2 .2 and B14 are 1(On) o set to 0(Off). B15 = $U1.2 ^ B14 (B) /*If both $U1

Otherwise B15 is set to 1(On)*/
r 0(Off), the B15 is

Left Shift (<<)

Format P1 = P2 << P3 Data Type U/UD
Function Shifts P2 to the left by P3 bits and saves the results in P1. The operation supports the logic shift

only.
P1 (I/E) The location to save the result.
P2 (I/E/C) The value or the location that holds the value to be shifted.
P3 (I/E/C) The number of bits to be shifted.
Example 1 (U) $U100 = $U101 << 8
Example 2 W100 << $U10 (UD) W200 =

Right Shift (>>)

Format P1 = P2 >> P3 Data Type U/UD
Function Shifts P2 to the right by P3 bits and saves the results in P1. The operation supports the logic shift

only.
P1 (I/E) The location to save the result.
P2 (I/E/C) tion that holds the value to be shifted. The value or the loca
P3 (I/E/C) The number of bits to be shifted.
Example 1 8 (U) $U100 = $U101 >>
Example 2 W200 = W100 >> $U10 (UD)

Logical AND (&&)

Format P1 = P2 && P3 Data Type B
Function Saves 1 in P1 if both P2 and P3 are 1, otherwise saves 0 in P1.

P1 (I/E) The bit to save the result.
P2,P3(I/E/C) The operands.
Example 1 $U100.0 = $U101.0 && $U101.1 (B)

14

14-16 CHAPTER 14 USING MACROS

l OR (||) Logica

Format P1 = P2 || P3 Data Type B
Function Saves 1 in P1 oth P2 and P3 are 1, otherwise saves 0 in P1. if either or b

P1 (I/E) The bit to save the result.
P2,P3(I/E/C) The operands.
Example 1 $U100.0 = $U101.0 || $U101.1 (B)

. Calc

MAX

14.4.5 ulation

Format P1 = MAX(P2,P3) Data Type U/S/UD/SD/F
Function alue of P2 and P3. Sets P1 to the larger v

P1 (I/E) The location to save the result.
P2,P3(I/E/C) The operands.
Example 1 $U100 = MAX(100, 200) /* Set $U100 to 200 */

MIN

Format P1 = MIN(P2,P3) Data Type U/S/UD/SD/F
Function Sets P1 to the smaller value of P2 and P3.

P1 (I/E) e result. The location to save th
P2,P3(I/E/C) The operands.
Example 1 $U100 = MIN(100, 200) /* Set $U100 to 100 */

BMAX

Format P1 = BMAX(P2,P3) Data Type U/S/UD/SD/F
Function e maximum in an array starting from P2 with P3 elements and saves the result in P1. Finds th

P1 (I) The location to save the result.
P2 (I) The starting location of the array.
P3 (I/C) The size of the array.
Example 1 $U100 = BMAX($U200, 16) (F) /* Find the maximum among 16 floating point numbers starting

from $U200 and save the result in $U100 */

BMIN

Format P1 = BMIN(P2,P3) Data Type U/S/UD/SD/F
Function Finds the minimum in an array starting from P2 with P3 elements and saves the result in P1.

P1 (I) The location to save the result.
P2 (I) The starting location of the array.
P3 (I/C) The size of the array.
Example 1 $U100 = BMIN($U200, 60) (F) /* Find the minimum among 60 floating point numbers starting from

$U200 and save the result in $U100 */

4 14

14-17 CHAPTER 14 USING MACROS

SUM

Format P1 = SUM(P2,P3) Data Type U/S/UD/SD/F
Function tes the sum of the value in an array starting from P2 with P3 elements and saves the Calcula

result in P1.

P1 (I) The location to save the result.
P2 (I) The starting location of the array.
P3 (I/C) The size of the array.
Example 1 $U100 = SUM($U200, 16) (F) /* Calculate the sum of 16 floating point numbers starting from

d save the result in $U100 */ $U200 an

XSUM

Format P1 = XSUM(P2,P3) Data Type U/UD
Function Calculates one element XOR (Bitwise Exclusive OR) sum of all the P3 elements in an array

starting from P2 and saves the result in P1.

P1 (I) ion to save the result. The locat
P2 (I) The starting location of the array.
P3 (I/C) The size of the array.
Example 1 orm XOR sum of 5 32-bit unsigned numbers starting from

$U200 and save the result in $U100. Another expression of XOR sum is $U100 = $U200 ^
$U202 ^ $U204 ^ $U206 ^ $U208 (UD) */

0,3) /* $U120=0011B */

$U100 = XSUM($U200, 5) (UD) /* Perf

$U100 =1001B
$U101 =1100B
$U102 =0110B
$U120 = XSUM($U10

SWAP

Format SWAP(P1,P2) Data Type U
Function low byte and high byte of every w o ting from P1 with P2 words. Swaps the ord in a w rd array star

P1 (I) The starting location of the array.
P2 (I/C) The size of the array.
Example 1 0000B

21 will
be 000000010000001B */

$U120=111111110000
$U121=1000000100000000B
SWAP($U120, 2) /* The value of $U120 will be 0000000011111111B, The value of $U1

14

14-18 CHAPTER 14 USING MACROS

4.6. Data Conversion 14.

BCD

Format D(P2) P1 = BC Data Type U/UD
Function er P2 to a BCD number and saves the result in P1. Converts binary numb

P1 (I/E) to save the result. The location
P2 (I/E/C) The binary number to be converted.
Example 1) /* The value of $U100 will be 1234. */ $U100 = BCD(0x1234) (U

BIN

Format P1 = BIN(P2) Data Type U/UD
Function er P2 to a binary number and saves the result in P1. Converts BCD numb

P1 (I/E) The location to save the result.
P2 (I/E/C) converted. The BCD number to be
Example 1 $U100 = BIN(1234) (U) /* The value of $U100 will be 0x1234. */

DW

Format (P2) P1 = DW Data Type U/S
Function 2-bit number and saves the result in P1. Converts 16-bit number P2 to a 3

P1 (I/E) The location to save the result.
P2 (I/E/C) The 16-bit number to be converted.
Example 1 e of $U101 will be 0. */ $U100 = DW(12345) (S) /* The value of $U100 will be 12345 and the valu

Example 2 (S) /* The value of $U200 will be -12345 and the value of $U201 will be $U200 = DW(-12345)
0xFFFF. */

W

Format P1 = W(P2) Data Type UD/SD
Function Converts 32-bit number P2 to a 16-bit number and saves the result in P1. The truncation error

may occur.
P1 (I/E) The location to save the result.
P2 (I/E/C) The 32-bit number to be converted.
Example 1 $U100 = W(0x12345678) (UD) /* The value of $U100 will be 0x5678 */

Example 2 $U200 = W(-12345) (SD) /* The value of $U200 will be -12345 */

4 14

14-19 CHAPTER 14 USING MACROS

 B2W

Format W(P2,P3) P1 = B2 Data Type U
Function rray and saves the result in P1. All the high

ay are set to 0.
Converts P3-byte array starting from P2 to a P3-word a
bytes of the word arr

P1 (I) The location (or the word array) to save the result.
P2 (I) The byte array to be converted.
P3 (I/C) The size of the byte array.
Example 1 = 0x45FA

0, 3) /* Convert 3 bytes starting from $U200 to 3 words starting from $U100,
101 will be 0x45 and $U102 will be 0x29. */

$U200
$U201 = 0xEB29
$U100 = B2W($U20
$U100 will be 0xFA, $U

W2B

Format 2B(P2,P3) P1 = W Data Type U
Function rray and saves the result in the byte array

iscards the high byte of every element of the word array to form a byte array
f elements. The array size cannot exceed 256.

Converts a word array P2 with P3 elements to a byte a
P1. The conversion d
with the same number o

P1 (I) The location (or the word array) to save the result.
P2 (I) The word array to be converted.
P3 (I/C) ze of the word array. The si
Example 1 $U200 = 0x45FA

1 = 0xEB29

00 = W2B($U200, 3) /* Convert 3 words starting from $U200 to 3 bytes starting from
be 0x29FA and the low byte of $U101 will be 0x81*/

$U20
$U202 = 0xC781
$U1
$U100, $U100 will

A2X

Format P1 = A2X(P2) Data Type U
Function Converts a 4-digit hex number in ASCII character form to a binary number and saves the result in

P1. The character of the fourth digit is in the first word of the word array P2 and the characters of
the other digits are in the following words in sequence.

P1 (I) The location to save the result.
P2 (I) The word array that contains the characters to be converted.
Example 1 $U20 = 49 // '1'

$U21 = 50 // '2'
$U22 = 69 // 'E'
$U23 = 70 // 'F'
$U100 = A2X($U20) /* The value of $U100 will be 0x12EF. */

14

14-20 CHAPTER 14 USING MACROS

X2A

Format P1 = X2A(P2) Data Type U
Function git hex number in ASCII character form and saves the result

 character of the fourth digit is saved in the first word of P1 and the
 other digits are saved in the following words in sequence.

Converts 16-bit number P2 to a 4-di
in word array P1. The
characters of the

P1 (I) The location (or the word array) to save the result.
P2 (I/C) The number to be converted.
Example 1 $U10 will be: 51('3'), 52('4'), 65('A'), 66('B') */ $U10 = X2A(0x34AB) /*The 4 words starting from

W2F

Format P1 = W2F(P2) Data Type U/S
Function in P1. Converts 16-bit number P2 to a floating point number and saves the result

P1 (I/E) The location to save the result.
P2 (I/E/C) The 16-bit number to be converted.
Example 1 10) (S) $U200 = W2F($U

D2F

Format P1 = D2F(P2) Data Type UD/SD
Function Converts 32-bit number P2 to a floating point number and saves the result in P1.

P1 (I/E) The location to save the result.
P2 (I/E/C) The 32-bit number to be converted.
Example 1 $U200 = D2F($U10) (SD)

F2W

Format P1 = F2W(P2) Data Type F
Function ting point number P2 to a 16-bit number and saves the result in P1. Converts floa

P1 (I/E) tion to save the result. The loca
P2 (I/E/C) The floating point number to be converted.
Example 1 $U200 = F2W($U10) (F)

F2D

Format P1 = F2D(P2) Data Type F
Function Converts floating point number P2 to a 32-bit number and saves the result in P1.

P1 (I/E) The location to save the result.
P2 (I/E/C) The floating point number to be converted.
Example 1 $U200 = F2D($U10) (F)

4 14

14-21 CHAPTER 14 USING MACROS

CT_BIT EXTRA

Format P1 = EXTRACT_BIT(P2,P3) Data Type U/UD
Function Extracts bit P3 from P2 and saves the result in P1.

P1 (I) The bit to save the result.
P2 (I) The location to extract the bit.
P3 (I/C) The number of the bit to be extracted.
Example 1 $U2.0 = EXTRACT_BIT($U10, 31) (UD) /* Extract bit 31 of the double word $U10 and save the

 $U2.0 */ result in

14.4.7. Con

IF ==

ditional Operation

Format = P3 IF P2 = Data Type U/S/UD/SD/F
Function IF command when P2 is equal to Executes the commands in the command block following this

P3.

P2,P3 (I/E/C/AE) The operands.

IF !=

Format P3 IF P2 != Data Type U/S/UD/SD/F
Function IF command when P2 is not equal Executes the commands in the command block following this

to P3.

P2,P3 (I/E/C/AE) The operands.

IF >

Format P3 IF P2 > Data Type U/S/UD/SD/F
Function IF command when P2 is greater Executes the commands in the command block following this

than P3.

P2,P3 (I/E/C/AE) The operands.

IF >=

Format IF P2 >= P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this IF command when P2 is greater

than or equal to P3.

P2,P3 (I/E/C/AE) The operands.

IF <

Format IF P2 < P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this IF command when P2 is less than

P3.

P2,P3 (I/E/C/AE) The operands.

14

14-22 CHAPTER 14 USING MACROS

IF <=

Format IF P2 <= P3 Data Type U/S/UD/SD/F
Function ands in the command block following this IF command when P2 is less than Executes the comm

or equal to P3.

P2,P3 (I/E/C/AE) The operands.

IF &

Format IF P2 & P3 Data Type U/UD
Function Executes the commands in the command block following this IF command when the result of

between P2 and P3 is non-zero. Bitwise AND

P2,P3 (I/E/C/AE) The operands.

IF !&

Format IF !(P2 & P3) Data Type U/UD
Function utes the commands in the command b in mand when the result of Exec lock follow g this IF com

Bitwise AND between P2 and P3 is zero.

P2,P3 (I/E/C/AE) The operands.

IF <bit>

Format IF P2 Data Type B
Function and if the condition P2 is

ue (1/On).
Executes the commands in the command block following this IF comm
tr

P2 ondition. (I/E/CE) The c

IF !<bit>

Format IF !P2 Data Type B
Function Executes the commands in the command block following this IF command if the condition P2 is

false (0/Off).

P2 (I/E/CE) The condition.

ELIF ==

Format ELIF P2 == P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is equal

to P3.

P2,P3 (I/E/C/AE) The operands.

ELIF !=

Format ELIF P2 != P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is not

equal to P3.

P2,P3 (I/E/C/AE) The operands.

4 14

14-23 CHAPTER 14 USING MACROS

ELIF >

Format ELIF P2 > P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is greater

than P3.

P2,P3 (I/E/C/AE) The operands.

ELIF >=

Format ELIF P2 >= P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is greater

than or equal to P3.

P2,P3 (I/E/C/AE) The rands. ope

ELIF <

Format ELIF P2 < P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command owing this ELIF command when P2 is less block foll

than P3.

P2,P3 (I/E/C/AE) The rands. ope

ELIF <=

Format P2 <= P3 ELIF Data Type U/S/UD/SD/F
Function and when P2 is less

r equal to P3.
Executes the commands in the command block following this ELIF comm
than o

P2,P3 (I/E/C/AE erands.) The op

ELIF &

Format ELIF P2 & P3 Data Type U/UD
Function Executes the

Bitwise
commands in the command block following this ELIF command when the result of

 AND between P2 and P3 is non-zero.

P2,P3 (I/E/C/AE) The operands.

ELIF !&

Format ELIF !(P2 & P3) Data Type U/UD
Function Executes the commands in the command block following this ELIF command when the result of

Bitwise AND between P2 and P3 is zero.

P2,P3 (I/E/C/AE) The operands.

ELIF <bit>

Format ELIF P2 Data Type B
Function Executes the commands in the command block following this ELIF command if the condition P2

is true (1/On).

P2 (I/E/CE) The condition.

14

14-24 CHAPTER 14 USING MACROS

!<bit> ELIF

Format ELIF !P2 Data Type B
Function and if the condition P2

e (0/Off).
Executes the commands in the command block following this ELIF comm
is fals

P2 (I/E/CE) The condition.

ELSE

Format ELSE

Function This command specifies the beginning of the default command block that will be executed if
none of the conditions in the preceding IF and/or ELIF commands is true. This is not an
executable command.

ENDIF

Format ENDIF
Function This command specifies the end of a command block, which begins at the command following

the matching IF, ELIF, or ELSE command. This is not an executable command.
Example mand Structures: IF-Com

Commands and
Structures Description

IF <condition>
…
ENDIF

Runs the command block between IF and ENDIF when the
condition is true, otherwise ignores the command block.

IF <condition>
…

Runs the command block between IF and ELSE whe
condition is true, otherwise runs the comman
ELSE and ENDIF. ELSE

…

ENDIF

n the
d block between

IF <conditio
…

n>

<condition_3>
.
.
.

IF

Runs the command bl n IF and the first ELIF and
ignores all th co ds in the structure when

tion 2. Runs the
and block between the first ELIF and the second ELIF and

ignores all the following commands in the structure when
condition 2 is true, otherwise checks condition 3. Repeats the
same operation until condition N is processed. If none of the
conditions are true, no command block in this structure is run.

ELIF <condition_2>
…

condition 1 is true, otherwise examines condi
comm

ELIF

ELIF <condition_N>
…
END

ock betwee
e following mman

IF <condition>
…
ELIF <condition_2>
…
ELIF <condition_3>
.
.
ELIF <condition_N>
…
ELSE
…
ENDIF

Runs the command block between IF and the first ELIF and
ignores all the following commands in the structure when
condition 1 is true, otherwise examines condition 2. Runs the
command block between the first ELIF and the second ELIF and
ignores all the following commands in the structure when
condition 2 is true, otherwise checks condition 3. Repeats the
same operation until condition N is processed. Runs the
command block between ELSE and ENDIF if none of the
conditions are true.

Note that there can be up to 20 nested IF-command structures.

4 14

14-25 CHAPTER 14 USING MACROS

14.4.8. Program Control

JMP

Format JMP P1
Function Unconditionally jumps to the program point specified by label P1.

P1 (CS) The label of the program point.
Example 1

$U20 = $U10 / 2
:

IF $U10 == 0
JMP SKIP /* Skip the command "$U20 = $U10 / 2". */

ENDIF

SKIP
$U10 = 1

<label>

Format P1:
Function t an ex gram point where it is

positioned.
This is no ecutable command. The P1 is the label of the pro

P1 (CS) cter st r to have the character ':' after

The chara
the label.

ring as the label of the program point. Remembe

Example 1 $U10 == 0
JMP SKIP /* Skip the command "$U20 = $U10 / 2" */

 / 2

IF

ENDIF
$U20 = $U10
SKIP:

$U10 = 1

JMP ==

Format P(P1,P2 == P3) JM Data Type U/S/UD/SD/F
Function the pro l to P3. Jumps to gram point specified by label P1 when P2 is equa

P1 (CS) e The label of th program point.
P2,P3 (I/E/C/AE) The . operands

JMP !=

Format P(P1,P2 != P3JM) Data Type U/S/UD/SD/F
Function s to the program point specified by label P1 when P2 is not equal to P3. Jump

P1 (CS) The label of the program point.
P2,P3 (I/E/C/AE) The operands.

JMP >

Format JMP(P1,P2 > P3) Data Type U/S/UD/SD/F
Function Jumps to the program point specified by label P1 when P2 is greater than P3.

P1 (CS) The label of the program point.
P2,P3 (I/E/C/AE) The operands.

14

14-26 CHAPTER 14 USING MACROS

P >= JM

Format P(P1,P2 >= P3) JM Data Type U/S/UD/SD/F
Function when P2 is greater than or equal to P3. Jumps to the program point specified by label P1
P1 (CS) ram point. The label of the prog
P2,P3 (I/E/C/AE) The operands.

JMP <

Format P(P1,P2 < P3) JM Data Type U/S/UD/SD/F
Function Jumps to the program point specified by label P1 when P2 is less than P3.

P1 (CS) The label of the program point.
P2,P3 (I/E/C/AE) The operands.

JMP <=

Format JMP(P1,P2 <= P3) Data Type U/S/UD/SD/F
Function label P1 when P2 is less than or equal to P3. Jumps to the program point specified by

P1 (CS) l of the program point. The labe
P2,P3 (I/E/C/AE) The operands.

JMP &

Format & P3) JMP(P1,P2 Data Type U/UD
Function the result of Bitwise AND between P2 Jumps to the program point specified by label P1 when

and P3 is non-zero.
P1 (CS) The label of the program point.
P2,P3 (I/E/C/AE) The operands.

JMP !&

Format JMP(P1,!(P2 & P3)) Data Type U/UD
Function program point specified by label P1 when the result of Bitwise AND between P2

and P3 is zero.
 Jumps to the

P1 (CS) of the program point. The label
P2,P3 (I/E/C/AE) The operands.

JMP <bit>

Format JMP(P1,P2) Data Type B
Function Jumps to the program point specified by label P1 if the condition P2 is true (1/On).

P1 (CS) The label of the program point.
P2,P3 (I/E/CE) The operands.

4 14

14-27 CHAPTER 14 USING MACROS

bit> JMP !<

Format JMP(P1,!P2) Data Type B
Function Jumps to the program point specified by label P1 if the condition P2 is false (0/Off).

P1 (CS) The label of the program point.
P2,P3 (I/E/CE) The operands.

CALL

Format CALL P1
Function Goes to sub-macro P1.

P1 (Sub-macro
name)

The sub-macro to be called.

Example 1 Funcation_01 */ CALL CommonFunction_01 /* Go to sub-macro named Common

RET

Format RET
Function the calling macro. This command can only be used in sub-macros. Returns to

FOR

Format FOR P2 Data Type U
Function Runs the commands within the FOR loop by P1 times. A FOR loop is enclosed by a matching

nd NEXT commands. There ca o sted FOR loops. pair of FOR a n be up t 20 ne
P1 (I/C) Total times to run the FOR loop
Example 1

 1 /* This command will be executed 10 times */
 12

$U200 = $U200 + 1 /* This command will be executed 120 times */
NEXT

FOR 10
$U100 = $U100 +
FOR

NEXT

NEXT

Format NEXT
Function This command indicates the end of a FOR loop. It is not an executable command.

Example 1 Example:
$U1 = 10
$U2 = 12
FOR $U1

$U100 = $U100 + 1 /* This command will be executed 10 times. */
FOR $U2

$U200 = $U200 + 1 /* This command will be executed 120 times. */
NEXT

NEXT

14

14-28 CHAPTER 14 USING MACROS

STOP

Format STOP
Function Stops t

first comma
he macro immediately. If the macro is a Cycle macro, it will run again starting from the

nd when the associated window is opened again. If the macro is a Main macro, it will
run again starting from the first command when restarting the application.

 cannot be used in sub-macros. This command

END

Format END
Function Indicates the end of macro and stops the macro in the current cycle. It can be put anywhere in a

macro to stop the macro at any point. If the macro is a cyclic macro, such as the Main macro and
the Cycle macro, it is stopped just in the current cycle and will be run again starting from the first

This command cannot be used in sub-macros.

command in the next cycle.

14.4.9. Timer Operation

SET_T

Format SET_T(P1,P2) Data Type U
Function Start imer P1 using the timer control block in P2. s the t

P1 (C) The ID of the timer. There are 8 timers available and the IDs are 0 to 7.
P2 (I) The starting location of the memory block (or word array) that is used as a Timer Control Block for the

timer. The structure of the Timer Control Block is shown below:
Word No. Data Item Description

0 Type of operation 0: One-shot; 1: Square-wave
1 Current timer value The timer increases the value of this word by 1 every

100ms.
2 Timer limit When the current timer value reaches the timer limit, the

timer will perform one of the following operations according
:

1) If the type of operation is One-shot (0), sets the time-up
flag to 1, resets the current timer value to 0, and stops itself.
2) If the type of operation is Square-wave (1), toggles the
time-up flag, resets the current timer value to 0, and
continues the timing operation.

to the type of operation

3 Time-up flag This word will be set to 0 or 1 when the current timer value is
equal to the timer limit.

The timer will use the associated Timer Control Block as its private memory, so do not use any words in
the block for other purposes.
A Timer Control Block requires 4 words.

Example 1 $U100 = 1 /* Type of operation is Square-wave. */
$U101 = 0 /* Initialize the current timer value to 0. */
$U102 = 5 /* Timer limit is 0.5 second (5*100ms). */
$U103 = 0 /* Initialize the time-up flag to 0. */
SET_T(3, $U100) /* Use timer #3 to generate a 1 Hz square wave on $U103.0 */

4 14

14-29 CHAPTER 14 USING MACROS

T STOP_

Format STOP_T(P1) Data Type U
Function Stops the timer P1.

P1 (C) The ID of the timer.
Example 1 STOP_T(1) /* Stop timer #1 */

WAIT_T

Format WAIT_T(P1) Data Type U
Function will not be executed

until the timer reaches its limit.
Waits for the time-up of timer P1. The macro command following this one

P1 (C) The ID of the timer.
Example 1 $U100 = 0 /* Type of operation is One-shot. */

01 = 0 /* Initialize the current timer value to 0. */
$U102 = 5 /* Timer limit is 0.5 second (5*100ms). */
$U103 = 0 /* Initialize the time-up flag to 0. */

7, $U100) /* Starts timer #7 as nd timer. */

$U1

SET_T(a 0.5 seco
WAIT_T(7) /* Wait 0.5 second */

14.4.10. Key Op

KB_MCR

p d a eration

Format KB_MCR(P1) Data Type U
Function Accepts or ignores t ated keypad button. This

command must be u . A keypad button runs the
specified macro wh keypad button macro to
accept or ignore the

he character/command currently input by the associ
sed only in a macro that is run by a keypad button

en it is pressed. You can use this command in a
 current input of that button.

P1 (I/C) The value o the location th ce of the keypad button
in alue is ill be ignored.

r
put. If the v

at holds the value to determine the acceptan
 0, the input will be accepted; Otherwise the input w

Example 1 KB_MCR(1) /* Ignore the current input */

KPD_TEXT

Format KPD_TEXT(P1) Data Type U
Function te array) that contains the null-terminated ASCII character string to be The memory block (or by

used to initialize the keypad display and buffer.
P1 (I) The memory block (or byte array) that contains the null-terminated ASCII character string to be

used to initialize the keypad display and buffer.
Example 1 $U100 = "initial text"

KPD_TEXT($U100) /* Initialize the keypad display and buffer using the string "initial text". */

14

14-30 CHAPTER 14 USING MACROS

1. Recipe Operation 14.4.1

RB2ROM

Format M(P2) P1 = RB2RO Data Type U
Function cipe block P2 to the flash ROM and saves the completion code in P1. Saves the data of re

P1 (I) The word to receive the completion code. If the completion code is 0, the operation succeeded;
 operation failed. otherwise the

P2 (I/C) ROM to save backup" The ID of the recipe block to be saved. The option "Need space in flash
must be selected for the recipe block.

Example 1 ROM(3) /* Save recipe block #3 to the flash ROM. */ $U10 = RB2

ROM2RB

Format P1 = ROM2RB(P2) Data Type U
Function recipe block P2 from the flash ROM and saves the completion code in P1. Restores the data of

P1 (I) The word to receive the completion code. If the completion code is 0, the operation succeeded;
otherwise the operation failed.

P2 (I/C) The ID of the recipe block to be restored. The option "Need space in flash ROM to save backup"
must be selected for the recipe block.

Example 1 OM2RB(3) /* Restore recipe b ROM. */ $U10 = R lock #3 from the flash

REF_RCP_OBJ

Format REF_RCP_OBJ(P1) Data Type U
Function . The recipe objects

and to update the display of
nging the data of a recipe block in a macro program.

Refreshes the recipe objects associated with the specified recipe block P1
cipe tables. You can use this comminclude recipe selectors and re

associated objects after cha

P1 (I/C) The ID of the associated recipe block.
Example 1 P_OBJ(3) /* Refresh the recip associated with recipe block #3 */ REF_RC e objects

4 14

14-31 CHAPTER 14 USING MACROS

2. Communication Operation

K

14.4.1

EN_LIN

Format EN_LINK(P1,P2,P3) Data Type U
Function tion link P1 or sub-link P2 of communication link P1 when P3 is 1. Disables Enables communica

the specified communication link or sub-link when P3 is 0.

P1 (I/C) The number of the communication link to be enabled or disabled.
P2 (I/C) The node address of the sub-link to be enabled or disabled. If the specified communication link

has no sub-link, this parameter is ignored. If the specified communication link has sub-links and
 enable or disable the link itself, set this parameter to 0. you want to

P3 (I/C) r to 1. To disable the To enable the specified communication link or sub-link, set this paramete
specified communication link or sub-link, set this parameter to 0.

Example 1 0, 0) /* Disable the sub-link, whose node address is 20, of communication ENABLE_LINK(1, 2
link 1. */

LINK_STS

Format P1 = LINK_STS(P2,P3) Data Type U
Function tus of communication link P ink of communication link P2 and saves the Gets the sta 2 or sub-l P3

result in P1.
P1 (I/C) n link or sub-link. The status is a

 table lists the meaning of each status value.
The word to receive the status of the specified communicatio
16-bit value. The following

Status Value Meaning Status Value Meaning
0 OK 14 Device busy
1 Overrun error 15 Unknown error
2 Break error 16 Link disabled
3 Parity error 17 Initialization failure
4 Framing error 18 Failed to send data
5 No response 19 Failed to receive data
6 Unrecognized

response
20 Failed to open connection

7 Timeout 21 Connection not ready
8 Inactive CTS 22 Invalid sub-link
9 Checksum error 23 Invalid COM port
10 Command rejected 24 Error
11 Invalid address 255 Condition uncertain
12 Invalid range 65535 Failed to get status
13 Invalid request

P2 (I/C) The number of the communication link.
P3 (I/C) The node address of the sub-link. If the specified communication link has no sub-link, this

parameter is ignored.
Example 1 $U100 = LINK_STS(2, 0) /* Get the status of communication link 2 and save it to $U100. */
Example 2 $U12 = LINK_STS(1, 128) /* Get the status of the sub-link, whose node address is 128, of

communication link 1 and save it to $U12. */

14

14-32 CHAPTER 14 USING MACROS

3. System Service

TC

14.4.1

GET_R

Format GET_RTC(P1) Data Type U
Function e result in P1. Gets the data of the real time clock and saves th

P1 (I) The starting location of the memory block that is used as an RTC data blo
operation result. The structure of the RTC data block is shown below:

ck to receive the

Data Item Data Type/Size Word No.
Second 16-bit Unsigned Integer 0
Minute 16-bit Unsigned Integer 1
Hour 16-bit Unsigned Integer 2
RTC adjustment 16-bit Sign 3 ed Integer
Day 16-bit Unsigned Integer 4
Month 16-bit Unsigned Integer 5
Year 16-bit Unsigned Integer 6
Day of w ed Integer 7 eek 16-bit Unsign

Second: 0- inute: 0-59; Hour: 0-23; RTC a -63-63; Day: 1-31; Month: 1-12; Year:
0(2000)-99 of week unday)-6(S
An RTC da quires 8 w s.

59; M djustment:
(2099); Day : 0(S aturday)
ta block re ord

Example 1 GET_RTC(et the da f the real tim cond will be in $U100 and the
day-of-wee 107. *

$U100) /* G ta o e clock. The se
k will be in $U /

SET_RTC

Format SET_RTC(P1) Data Type U
Function Sets the re sing the data in P1. al time clock u

P1 (I) The startin em block that i d as an RTC data block to contain the new
settings for clock. See the descrip

g location of the m ory s use
 the real time tion of GET_RTC to know the structure of the

RTC data block.
Example 1 $U100 = 0

 Adjustment

$U107 = 4 // Thursday
SET_RTC($U100) /* Set the real time clock to 8:30:00 July 1st 2010 Thursday */

// Second
$U101 = 30 // Minute
$U102 = 8 // Hour
$U103 = 0 //
$U104 = 1 // Day
$U105 = 7 // July
$U106 = 10 // Year 2010

SYS

Format SYS(P1,P2,P3) Data Type U
Function Requests system service P1 with the arguments P2 and P3. This command is reserved for

system use.
P1 (I) The code of the system service.
P2,P3 (I/C) The arguments of the system service.

4 14

14-33 CHAPTER 14 USING MACROS

. Screen Operation

WS

14.4.14

OPEN_

Format OPEN_WS P1 Data Type U
Function is comm will not open the specified

n if it is a norm enu screen. The ma ands following this command
not be executed dow screen is closed. Also, when a screen's Cycle
cro is waiting for w screen opened by this command, that screen

annot be closed or ns.

The number of the window screen to be opened. Th and
cro commscree al screen or m

will until the opened win
ma the closing of the windo
c switched by any mea

P1 (I/C) r of the w e opened. If the screen number indicates the normal
n or menu scre opened.

The numbe indow screen to b
scree en, no screen will be

CLOSE_WS

Format CLOSE_WS
Function ed by the macro command OPEN_WS. Closes the window screen that was open

14

14-34 CHAPTER 14 USING MACROS

. File Operation

14.4.15

FILE_IO

Format P1 = FILE_IO(P2,P3) Data Type U
Function Per aves the completion code

in P
forms the file operation specified by P2 and P3 using default filename and s
1.

P1 (I) The peration
succeed

 word to receive the completion code of the operation. If the completion code is 0, the o
ed; otherwise the operation failed.

P2,P3
(I/C)

P2 specifies the type of file operation. P3 specifies the ID of the data source. The following table describes
how to set P2 and P3.

File Operation P2 P3 Default Filename Format
Save Logged Data (.txt) 1 DL<ID>_<Date>_<Time>.txt
Save Logged Data (.csv) 14

Data logger ID (0-15)
 DL<ID>_<Date>_<Time>.csv

Save Logged Alarms (.txt) 2 AL_<Date>_<Time>.txt
Save Logged Alarms (.csv) 15

0
AL_<Date>_<Time>.csv

Save Alarm Counts (.txt) 3 AC_<Date>_<Time>.txt
Save Alarm Counts (.csv) 16

0
AC_<Date>_<Time>.csv

Save Recipe Data (.txt) 4 RB<ID>.txt
Save Recipe Data (.csv) 17 RB<ID>.csv
Save Recipe Data (.prd) 5

Recipe block ID
(0-15)

RB<ID>.prd
Print Screen to File
(256-color .bmp)

6 S<ID>_<Date>_<Time>.bmp

Print Screen to File
(64K-color .bmp)

7

Screen number
(1-7999)

S<ID>_<Date>_<Time>.bmp

Save Logged Operations (.txt) 9 0 OL_<Date>_<Time>.txt
Save Logged Operations (.csv) 18 0 OL_<Date>_<Time>.csv
Save Logged Data (.ldf) 10 Data logger ID (0-15) DL<ID>_<Date>_<Time>.ldf
Take Picture (.bmp) 12 CAM<ID>_<Date>_<Time>.bmp
Take Picture (.jpg) 13

USB camera ID (0-3)
CAM<ID>_<Date>_<Time>.jpg

Note:
<ID>: ID of the data logger, ID of the recipe block, ID of the USB camera, or number of the screen
<Date>: The date when saving the data. <Time>: The time when saving the data.
You can select the formats of <Date> and <Time> on the Custom page in the General Setup dialog box.

4 14

14-35 CHAPTER 14 USING MACROS

O_N FILE_I

Format FILE_IO_N(P2,P3,P4) P1 = Data Type U
Function d saves the completion

code in .
 Performs the file operation specified by P2 and P3 using filename P4 an

P1
P1 (I) code is 0, the The word to receive the completion code of the operation. If the completion

operation succeeded; otherwise the operation failed.
P2,P3 (I/ ecifies the type of file operation. P3 spe ta source. The following table

escribes how to t P P3.
C) P2 sp cifies the ID of the da

d se 2 and
File Operation P2 P3
Save Logged ta (. v/.txt) logger ID (0-15) Da cs 31 Data
Save Logged Alarms (.txt) 32 0
Save Alarm C ts (.txt) oun 33 0
Save Recipe Data (.csv/.txt) ID (0-15) 34 Recipe block
Save Recipe Data (.p Recipe block ID (0-15) rd) 35
Print Screen to File (256-color .bmp) Screen number (1-7999) 36
Print Screen to ile (p) umber (1-7999) F 64K-color .bm 37 Screen n
Save Logged Operat) 39 0 ions (.txt
Save Logged Data (.ldf) D (0-15) 40 Data logger I
Take Picture (.bmp) camera ID (0-3) 42 USB
Take Picture (.jpg) camera ID (0-3) 43 USB

P4 (I) y that contain ilename o must be a valid
hname wit o st be null terminated

each charac ccupies one byte. The ing is 127. All the folders
stated in the full pathname must already exist or the file operation will fail.

The byte arra
Windows pat

s the specified f
h ASCII characters

r full pathname. The name
nly. The character string mu

and ter o maximum length of the str

MKDIR

Format P1 = MKDIR(P2)
Function Creates a new directory with the specified name P2 and saves the result to P1.

P1 (I) The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.

P2 (I) The byte array that contains the name of the new directory. The name must be a valid directory
name with or without pathname and has only ASCII characters in it.

14

14-36 CHAPTER 14 USING MACROS

 OPEN_FILE

Format P1 = OPEN_FILE(P2,P3) Data Type U
Function Creates or opens a file.

P1 (I) ock that is used as a File Information Block to receive the
w:

The starting location of the memory bl
operation result. The structure of the File Information Block is shown belo

Data Item Data Type/Si e z Word No.
File handle 32-bit Unsi 0 and 1 gned Integer
File size 32 bit Unsigned Integer 2 and 3
Filename Byte array with 81 elements 4 through 44

The file handle is zero if the operation faile
ewly created file
inated characte allowable size is 80. It is set
y opene

ck requires 4 ords

d.
The file size is zero for a n .
The filename is a null-term
when the file is successfull

r string. The maximum
d.

A File Information Blo 5 w .
P2 (I) y that contains the filename o of the file to be opened. The name

inated string and has y AS .
The byte arra r the full pathname
is a null-term onl CII characters in it

P3 (I/C) Specifies the purpose of opening the file.
Purpose Value
Read 0
Write 1
Append 3
Read CSV File 5

Example 1
n the file “test.txt” for the read operation. The double word

e file size. The byte

$U10 = “test.txt”
$U100 = OPEN_FILE($U10, 0) /* Ope
$U100 will contain the file handle. The double word $U102 will contain th
array $U104 will contain the filename. */

READ_FILE

Format P1 = READ_FILE(P2,P3,P4) Data Type U
Function Reads P4 bytes from file P2 to buffer P3 and saves the result in P1.

P1 (I) The word to receive the number of bytes that were actually read. If the operation failed, the
number is 65535 (0xFFFF).

P2 (I) The file handle of the file to be read.
P3 (I) The memory block to receive the data read from the file.
P4 (I/C) Number of bytes to be read from the file. The maximum you can specify is 32767(0x7FFF).
Example 1 $U200 = READ_FILE($U100,$U150,20) /* Read 20 bytes from the file specified by the file

handle in $U100 and saves the data in the memory block starting from $U150. */

4 14

14-37 CHAPTER 14 USING MACROS

_FILE WRITE

Format P1 = WRITE_FILE(P2,P3,P4) Data Type U
Function mpletion code in P1. Writes P4 bytes of data in P3 to file P2 and saves the co

P1 (I) ord to receive e of the operation. If the completion code is 0, the
tion succeede ration fail

The w
opera

 the completion cod
d; otherwise the ope ed.

P2 (I) le handle of thThe fi e file.
P3 (I) y) that stores the data to be written to the file. The memory block (or byte arra
P4 (I/C) Number of bytes to be written to the file.
Example 1 100,$U150,30) /* Write 30 bytes of data stored in the memory block

 specified by the file handle in $U100. */
$U200=WRITE_FILE($U
starting from $U150 to the file

CLOSE_FILE

Format = CLO P2,P3) P1 SE_FILE(Data Type U
Function ses an opened file P2 and saves the completion code in P1. Clo

P1 (I) e w rd to receive the completion code of the operation. If the completion code is 0, the
n cceeded; otherwise the operation failed.

Th o
operatio su

P2 (I) The file handle of the file to be closed.
Example 1 in $U100. */ $U200=CLOSE_FILE($U100) /* Close the file specified by the file handle

DELETE_FILE

Format (P2) P1 = DELETE_FILE Data Type U
Function code in P1. Deletes a file named P2 and saves the completion

P1 (I) The word to receive the completion code of the operation. If the comp
operation succeeded; othe

letion code is 0, the
rwise the operation failed.

P2 (I) The byte array that contains the filename
is a null-terminated string and has only A

 or the full pathname of the file to be deleted. The name
SCII characters in it.

Example 1 $U10 = “test.txt”
$U200 = DELETE_FILE($U10) /* Delete the file “test.txt”. */

RENAME_FILE

Format P1 = RENAME_FILE(P2,P3) Data Type U
Function Renames file P2 with new name P3 and saves the completion code in P1.

P1 (I) The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.

P2 (I) The byte array that contains the filename or the full pathname of the file to be renamed. The
name is a null-terminated string and has only ASCII characters in it.

P3 (I) The byte array that contains the new filename. The name is a null-terminated string and has only
ASCII characters in it.

Example 1 $U10 = “test.txt”
$U50 = “new.txt”
$U200 = RENAME_FILE($U10, $U50) /* Rename the file “test.txt” to “new.txt”. */

14

14-38 CHAPTER 14 USING MACROS

OL_INFO GET_V

Format P1 = GET_VOL_INFO(P2,P3) Data Type U
Function n code is saved in Gets the information of volume P2 and saves the result in P3. The completio

P1.
P1 (I) The word to receive the completion code of the operation. If the completion code is 0, the

wise the operation failed. operation succeeded; other
P2 (I/C) The drive ID.

ID Drive
0 Current drive
3 Drive C
4 Drive D
5 Drive E

P3 (I) The starting location of the memory block that is used as a Volume Information Block to receive
k is shown below: the operation result. The structure of the Volume Information Bloc

Data Item Data Type/Size Word No.
Volume name Byte array with 32 elements 0 through 15
Volume size 32-bit Unsign r 16 and 17 ed Intege
Free size 32-bit Unsigned Integer 18 and 19
Drive ID 16-bit Unsigned Integer 20

The volume name is a null-terminated character string. The maximum allo
characters.

wable size is 31

 unit of volume size and the unit of free size are 1024 bytes.
ds.

Both the
A Volume Information Block requires 21 wor

Example 1 $U100 = GET_VOL_INFO(0, $U0) /* Get the volume information of the current drive. The
volume name will be stored in $U0 through $U15. The size of the drive will be stored in $U16 and

 of the drive will be s 1 nd $U19. The ID of the current drive will $U17. The free size tored in $U 8 a
be stored in $U20. */

READ_CSV

Format P1 = READ_CSV(P2,P3,P4) Data Type S/U/SD/UD/F
Function d saves the result in P1.Reads the data in the field of row P3 and column P4 of the CSV file P2 an

P1（I）

 location to receive the value of the specified field. The data type selected for this
 should be the same as the data type of the specified field, or the operation may fail. If

1. To know if the operation failed or
not, check the word $S522. When the value of $S522 is non-zero, the operation failed.

The word
command
the operation fails for any reason, no value will be written to P

P2（I） The file handle of the file to be read. The file must be a CSV file and is opened with the purpose of
Read CSV File. The delimiter must be TAB.

P3（I/C） The row number of the field to be read. The row counts from 0.

P4（I/C） The column number of the field to be read. The column counts from 0.

Example 1

$U10 = "test.csv"
$U100 = OPEN_FILE($U10,5) /* Open the file "test.csv" for the READ CSV FILE operation. */
$U200 = READ_CSV($U100,2,3) (F) /* Read the floating point number in the field of row 2 and
column 3 and save the result in $U200 and $U201. */

4 14

14-39

CSV_STRREAD_

Format P1 = READ_CSV_STR (P2,P3,P4)

Function string in the field of row P3 and column P4 of the CSV file P2 and saves the result in
P1.
Reads the

P1（I）

The byte array to receive the string in the specified field. The maximal string length that this
command can handle is 128. If the operation fails for any reason, no value will be written to P1. To
know if the opera led or not, check the word $S522. When the value of $S522 is non-zero,
the operation fai

tion fai
led.

P2（I） ened with the purpose of The file handle of the file to be read. The file must be a CSV file and is op
Read CSV File. The delimiter must be TAB.

P3（I/C） number he row couThe row of the field to be read. T nts from 0.

P4（I/C） olumn num read. The colu s from 0. The c ber of the field to be mn count

Example 1 = OPEN_FILE($U10,5) /* Open the file "test.csv" for the READ CSV FILE operation. */
 string in the field of row 2 and column 4 and

arting at $U200. */

$U10 = "test.csv"
$U100
$U200 = READ_CSV_STR($U100,2,4) /* Read the
save the result in the byte array st

CHAPTER 14 USING MACROS

14

14-40 CHAPTER 14 USING MACROS

14.4.16. Comparison

==

Format P1 = P2 == P3 Data Type U/S/UD/SD/F/B
Function Sets bit P1 to 1 if P2 is equal to P3, otherwise sets P1 to 0.

P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE s.) The operand
Example 1 $U3.3 = ($U10 + $U20) == 25.75 (F)

!=

Format != P3P1 = P2 Data Type U/S/UD/SD/F/B
Function Sets bit P1 to 1 if P2 is not equal to P3, otherwise sets P1 to 0.

P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C A/ E) The operands.
Example 1 $U3.3 = ($U10 + $U20) != -700 (S)

>

Format P1 = P2 > P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is greater than P3, otherwise sets P1 to 0.

P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) > $U30 (UD)

>=

Format P1 = P2 >= P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is greater than or equal to P3, otherwise sets P1 to 0.

P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) >= 25.75 (F)

<

Format P1 = P2 < P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is less than P3, otherwise sets P1 to 0.

P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) < 25.75 (F)

<=

Format P1 = P2 <= P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is less than or equal to P3, otherwise sets P1 to 0.

P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) <= 25.75 (F)

4 14

14-41 CHAPTER 14 USING MACROS

14.4.17. String Operation

 STRCPY

Format STRCPY(P1, P2)
Function 1. Copies the string in P2 to P
P1 (I) The byte array that receives a copy of the string in P2. The byte array must be large enough to

hold the string and the null terminator.
P2 (I) rce, i.e. the byte array that contai -te to be copied. The sou ns the null rminated string
Example 1

 command STRCPY is executed, the byte array $U20 contains the string “ABCDE” and
 the following:

$U10 = “ABCDE”
STRCPY($U20, $U10)
After the
the memory content is like

Word Low Byte High Byte
$U20 'A' 'B'
$U21 'C' 'D'
$U22 'E' 0

Example 2
STRCPY($U20, $U10)
After the command STRCPY is executed, the byte array $U20 contains the string “12” and the

content is like the following:

 $U10 = “12”

memory
Word Low Byte High Byte
$U20 '1' '2'
$U21 0 Undefined

STRCAT

Format AT(P1, P2) STRC
Function Appends string in P2 to string in P1.

P1 (I) The byte array that contains a null-terminated string to which the command appends P2. The byte
h to hold both strings and the null terminator. array must be large enoug

P2 (I) The byte array that contains a null-terminated string to be appended to the string in P1.
Example 1 $U10 = “ABC”

 “12345”
ed, the byte array $U10 contains

$U20 =
STRCAT($U10, $U20) /* After this command is execut
“ABC12345” */

Example 2 $U100 = “C:\MyFolder\”

$U140 = “.txt“
STRCAT($U100, $U130)
STRCAT($U100, $U140) /* After this command is executed, the byte array $U100 contains
“C:\MyFolder\Test.txt” */

$U130 = “Test”

14

14-42 CHAPTER 14 USING MACROS

STRLEN

Format P1 = STRLEN(P2)
Function ngth of string P2 and saves the result in P1. Gets the le

P1 (I) The word to receive the result.
P2 (I) he null-terminated string. The byte array that stores t
Example 1

N($U10) /* After this command is executed, the value of $U20 is 3. */
$U10 = “ABC”
$U20 = STRLE

STRCMP

Format = STRCMP(P2,P3) P1
Function mpares strings and P3 lexicographically and saves a value indicating their relationship in

.
Co P2
P1

P1 (I) The value of comparison result.
Value Description

0 P2 and P3 are identical.
1 P2 is greater than P3.
0xFFFF P2 is less than P3.

P2,P3 (I) The byte array that contains a null-terminated string to compare.
Example 1 C”

$U10 = “AB
$U20 = “abc”
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is 0xFFFF*/

Example 2

TRCMP($U10, $U20) /* After this command is executed, $U30 is 1*/

$U10 = “XYZ”
“ABC” $U20 =

$U30 = S
Example 3

($U10, $U20) /* After this command is executed, $U30 is 0*/

$U10 = “ABC”
$U20 = “ABC”

TRCMP$U30 = S

4 14

14-43 CHAPTER 14 USING MACROS

P STRICM

Format P1 = STRICMP(P2,P3)
Function P2 and P3 lexicographically and saves a value indicating

P1
Compares lowercase version of strings

ationship in . their rel

P1 (I)
Value Description

The value of comparison result.

0 P2 and P3 are identical.
1 P2 is greater than P3.
0xFFFF P2 is less than P3.

P2,P3 (I) The byte array that contains a null-te mpare. rminated string to co
Example 1 $U10 = “ABC”

 = “abc”
$U30 = STRICMP($U10, $U20) /* After this command is executed, $U30 is 0*/
$U20

Example 2
 “ABC”

d, $U30 is 1*/

$U10 = “XYZ”
$U20 =
$U30 = STRICMP($U10, $U20) /* After this command is execute

Example 3 “ABC”
 “ABC”

cuted, $U30 is 0xFFFF*/

$U10 =
$U20 =
$U30 = STRCMP($U10, $U20) /* After this command is exe

14

14-44 CHAPTER 14 USING MACROS

P STRNCM

Format P1 = STRNCMP(P2,P3,P4)
Function lly compares, at most, the first P4 characters in strings P2 and P3 and saves a

elationship between the substrings in P1.
Lexicographica
value indicating the r

P1 (I) he value of comparison result.
Value Description

T

0 P2's substring and .P3's substring are identical
1 P2's substring is greater than P3's substring .
0xFFFF P2's substring is less than P3's substring .

Note: The comparison ends if a terminating null character is reached in either string before P4
rminating null character is reached in
r string is less.

aracters from 91 to 96 in the ASCII table ('[', '\', ']', '^', '_', and '`') will evaluate as less than

characters are compared. If the strings are equal when a te
ring before P4 characters are compared, the shorteeither st

The ch
any alphabetic character.

P2,P3 (I) te array that contains a null-terminated string to compare. The by
P4 (I/C) The number of characters to compare.
Example 1 $U10 = “XYZ”

$U20 = “XYZAB”
$U30 = STRNCMP($U10, $U20,4) /* After this command is executed, $U30 is 0xFFFF*/

Example 2 $U10 = “ABZ”
$U20 = “ABC”
$U30 = STRNCMP($U10, $U20,2) /* After this command is executed, $U30 is 0*/

Example 3 $U10 = “AXC”
$U20 = “ABC”
$U30 = STRNCMP($U10, $U20,3) /* After this command is executed, $U30 is 1*/
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is 0xFFFF*/

STRCHR

Format P1 = STRCHR(P2,P3)
Function Finds the first occurrence of a character P3 in a string P2 and saves a search result in value

indicating the position of the found character in P1.
P1 (I) The value of search result. If the character P3 is not found in P2, the result value is

0xFFFF.Otherwise, the result value is the index to the first occurrence of character P3 in a string
P2.

P2 (I) The byte array that contains a null-terminated source string.
P3 (I/C) The byte that contains a character code to be located.
Example 1 $U10 = “The quick brown dog jumps over the lazy fox.”

$U20 = 0x72 /* The ASCII code of character 'r' */
$U30 = STRCHR($U10, $U20) /* After this command is executed, $U30 is 11*/

4 14

14-45 CHAPTER 14 USING MACROS

TR NUM2S

Format P1 = NUM2STR(P2,P3) Data Type U/UD
Function r in P2 to a string with P3 characters and saves the result in P1. Converts the numbe

P1 (I) y that stores the resThe byte arra ult.
P2 (I/C) The number or the location that holds the number to be converted.
P3 (I/C) ecifies the exact number of ch r of digits of P2

s of P2 exceeds
ngth of the result.

Sp aracters that the result should have. If the numbe
is less than P3, the result is padded on the left with zeros. If the number of digit
P3, the higher digits are truncated. If P3 is 0, there is no limitation on the le

Example 1
 byte array $U100

$U120 = 123
$U100 = NUM2STR($U120, 0) (U) /* After this command is executed, the
contains “123”. */

Example 2
 = NUM2STR($U120, 10) (UD) /* After this command is executed, the byte array $U100

 “0001234567”. */

$U120 = 1234567 (UD)
$U100
contains

Example 3
 = NUM2STR($U120, 5) (UD) /* After this command is executed, the byte array $U100

67”. */

$U120 = 1234567 (UD)
$U100
contains “345

TIME2STR

Format P1 = TIME2STR(P2) Data Type U
Function Converts the current system time to a string using the format specified by P2 and saves the result

in P1.
P1 (I) he result. The byte array that stores t
P2 (I/C) Specifies the desired conversion format.

Format P2 Value Remark
hhmmss 0 hh: hour(00-23); mm: minute(00-59); ss: second(00-59)
hhmm 1 hh, mm: same as above

Example 1 e current system time is 12:30:59. After this command is
 “123059”. */

$U10 = TIME2STR(0) /* Assume that th
executed, the byte array $U10 contains

DATE2STR

Format P1 = DATE2STR(P2) Data Type U
Function Converts the current system date to a string using the format specified by P2 and saves the result

in P1.
P1 (I) The byte array that stores the result.
P2 (I/C) Specifies the desired conversion format.

Format P2 Value Remark
YYMMDD 0 YY: year (00-99); MM: month(01-12); DD: day(01-31)
YYMM 1 YY, MM: same as above
YYMMMDD 2 YY: year (00-99); MMM: month(JAN-DEC); DD: day(01-31)
YYMMM 3 YY, MMM: same as above

Example 1 $U10 = DATE2STR(0) /* Assume that the current system date is December 7, 2008. After this
command is executed, the byte array $U10 contains “081207”. */

Example 2 $U20 = DATE2STR(3) /* Assume that the current system date is December 31, 2008. After this
command is executed, the byte array $U20 contains “08DEC”. */

14

14-46 CHAPTER 14 USING MACROS

 TD2STR

Format P1 = TD2STR(P2) Data Type U
Function em time and date to a string using the format specified by P2 and saves Converts the current syst

the result in P1.
P1 (I) The byte array that stores the result.
P2 (I/C) Specifies the desired conversion format.

Format P2
Value Remark

YYMMDD_hhmmss 0 YY: year (00-99); MM: month(01-12); DD: day(01-31)
) ; ss: second(00-59) hh: hour(00-23); mm: minute(00-59

YYMMMDD_hhmmss 1 YY, DD, hh, mm, ss: same as above
MMM: month(JAN-DEC)

YYMMDD_hhmm 2 YY, DD, hh, mm: same as above; MM: month(01-12)
YYMMMDD_hhmm 3 YY, DD, hh, mm: same as above;

MMM: month(JAN-DEC)
Example 1 , 2008 and the current

10 contains
$U10 = TD2STR(0) /* Assume that the current system date is December 7
system time is 15:18:30. After this command is executed, the byte array $U
“081207_151830". */

Example 2 e that the current system date is December 31, 2008 and the current
tem :30 r this command is executed, the byte array $U20 contains

EC31_1330”. */

$U20 = TD2STR(3) /* Assum
sys time is 13 :00. Afte
“08D

I2A

Format P1 = I2A(P2,P3) Data Type U/S/UD/SD
Function Converts the integer number in P2 to a string and saves the result in P1. The string is generated

he format specified by P3 anaccording to t d P4.

P1 (I) The byte array that stores the result. The result is a null terminated string.
P2 (I/C) location that holds the integer number to be converted. The integer number or the
P3 (I/C) er of digits the string can have. Specifies the maximum numb
P4 (I/C) cifie o in ecimal point in the string. A decimal point is inserted to the left of the

git en P4 is
Spe s where t sert a d
nth di wh n. No decimal point is inserted when P4 is 0.

Example 1 120 = 23
 = A($U120 array $U100 contains

”. */

$U 1
$U100 I2 , 5, 0) /* After this command is executed, the byte
“123

Example 2
mand is executed, the byte array $U100 contains

$U120 = 1234567 (UD)
$U100 = I2A($U120, 6, 2) (UD) /* After this com
“2345.67”. */

Example 3
$U100 = I2A($U120, 5, 1) (UD) /* After this command is executed, the byte array $U100 contains
“-1234.5”. */

$U120 = -12345 (S)

4 14

14-47 CHAPTER 14 USING MACROS

A2I

Format P1 = A2I(P2,P3,P4) Data Type U/S/UD/SD
Function an integer value and saves the result in P1. Converts the string P2 to

P1 (I) The location that stores the result. The result is 0 when there is any conversion error.
P2 (I) byte array t ld ing to be converted. The hat ho s the str
P3 (I/C) le h of th n P3 is 0, the string must be

a null terminated string.
Specifies the ngt e string. It is allowed to specify 0 for P3. Whe

P4 (I/C) c nverted. Specifies how many fra tional digits in the string are to be co
Example 1 23”

($U 0, 0, ecuted, the value in word $U100 is 123. */
$U120 = “1
$U100 = A2I 12 0) /* After this command is ex

Example 2 $U120 = “1234567”
ue in double word $U100 = A2I($U120, 6, 0) (UD) /* After this command is executed, the val

$U100 is 123456. */
Example 3

he value in word $U100 is
$U120 = “-123.45”
$U100 = A2I($U120, 0, 2) (S) /* After this command is executed, t
-12345. */

F2A

Format P1 = F2A(P2,P3) Data Type F
Function s the result in P1. The string is

 .
Converts the floating point number in P2 to a string and save
generated according to the format specified by andP3 P4

P1 (I) The byte array that stores the result. The result is a null terminated string.
P2 (I/C) er to be converted. The floating point number or the location that holds the floating point numb
P3 (I/C) Specifies the number of integral digits the string can have.
P4 (I/C) Specifies the number of fractional digits the string can have.
Example 1 (F)

y $U100 contains
$U120 = 123.45
$U100 = F2A($U120, 5, 2) /* After this command is executed, the byte arra
“123.45”. */

Example 2 34 (F)
 array $U100 contains

”. */

$U120 = 12
$U100 = F2A($U120, 6, 2) (UD) /* After this command is executed, the byte
“1234.00

Example 3 $U120 = -1234.5 (S)
$U100 = F2A($U120, 5, 1) (UD) /* After this command is executed, the byte array $U100 contains
“-1234.5”. */

14

14-48 CHAPTER 14 USING MACROS

F A2

Format P1 = A2F(P2,P3) Data Type F
Function esult in P1. Converts the string P2 to a floating point number and saves the r

P1 (I) The location that stores the result. The result is 0 when there is any conversion error.
P2 (I) The byte array that holds the string to be converted.
P3 (I/C) cify 0 for P3. When P3 is 0, the string must be

rminated string.
Specifies the length of the string. It is allowed to spe
a null te

Example 1
e word $U100 is 123.4. */

$U120 = “123.4”
$U100 = A2F($U120, 0) /*The value of the floating point number in doubl

Example 2 34567”
2F($U120, 6) (UD) /* The value of the floating point number in double word $U100 is

$U120 = “12
$U100 = A
123456. */

Example 3 20 = “-123.45”
$U100 = A2F($U120, 0) (S) /* The value of the floating point number in double word $U100 is

$U1

-123.45. */

4 14

14-49 CHAPTER 14 USING MACROS

 Run14.4.18. Operation

RUN

Format RUN(P1)
Function

 on the PC.
Runs the executable P1 which is on the same PC. This command is only available for the runtime
software

P1 (I/A) The name of the executable to be run.
Example 1 RUN "ABC.exe" /* Run the program ABC */
Example 2 0 = "XYZ.bat"

 /* Run the batch file XYZ */
$U1
RUN $U10

RUNW

Format P1 = RUNW(P2)
Function Runs the executable P2 which is on the same PC and saves the result in P1. Note that the macro

command following this one will not be executed until the program is closed. This command is
only available for the runtime software on the PC.

P1 (I) The word to receive the result.
P2 (I/A) The name of the executable to be run.
Example 1 $U10 = RUNW "ABC.exe" /* Run the program ABC and use $U10 to get the result. */

IF $U10 == 0 /* If the result is 0 then run the batch file XYZ. */
$U20 = "XYZ.bat"
$U11 = RUNW $U20 /* Run the batch file XYZ. */

ENDIF

14

14-50 CHAPTER 14 USING MACROS

ation

PRINT

14.4.19. Print Oper

Format P1 = PRINT(P2,P3) Data Type U
Function P2 to the printer and saves the completion code in P1. Sends P3 bytes of data stored in byte array

P1 (I) The word to receive the completion code of the operation. The following table describes the meanings
on codes. of the completi

Code Description
0 Succeeded
1 Printer not ready
3 System error
4 Printer busy
7 No printer specified

P2 (I) The starting location of the byte array that stores the data to be sent to the printer.
P3 (I/C) ter. The length in byte of the data to be sent to the prin
Example 1 $

 = PRINT($U10, 15) /* Send the string “This is a test.” to the printer. */
$U10 = 10
$U20 = PRINT($U10, 1) /* Send the line-feed character to the printer */
$U10 = 12
$U20 = PRINT($U10, 1) /* Send the form-feed character to the printer */

U10 = "This is a test."
$U20

Example 2 $U10 = 0x401b /* ESC, '@' */
$U20 = PRINT($U10, 2) /* Send the initialization command to the EPSON printer */

PRINT_SCREEN

Format P1 = PRINT_SCREEN(P2,P3) Data Type U
Function Prints screen P2 and saves the result in P1.

P1 (I) The word to receive the completion code of the operation. The following table describes the meanings
of the completion codes.

Code Description
0 Succeeded
1 Printer not ready
2 Invalid screen number
3 System error
4 Printer busy
5 System busy
6 Improper use of this command (See Note)
7 No printer specified

Note: This command can only be used in the following types of macros: Main Macro, Event Macro,
Time Macro, and Cycle Macro.

P2 (I/C) The number of the screen to be printed. The printed area is specified in the Screen Properties dialog
box.

P3 (I/C) Reserved for future use. Must be 0.
Example 1 $U0 = PRINT_SCREEN(28, 0) /* Print screen #28*/

4 14

14-51 CHAPTER 14 USING MACROS

BLANK

Format P1 = (BLANK P2) D Type U ata
Function acters. Blanks the print buffer P1, i.e. makes the print buffer P1 contain only blank char

P1 (I) be blanked. The print buffer is a byte array. You should always blank a print
f inting strings to it.

The print buffer to
bu fer before pr

P2 (I/C)
The fer. The unit is byte (one-byte character).
For size of a print buffer is 40, it has 20 words and can contain up to 40 one-byte
cha

 size of the print buf
 example, if the
racters.

Example 1 BLA , 80) /* Blank the print buffer starting at $U100 with a length of 40 words. */ NK($U100

P2B

Format P1 P2 P3 = P2B (,) Data Type U

Function t the specified byte position P3. Prints the null-terminated string P1 to the print buffer P2 a
P1 (I) yte array that holds the string to be printed. The b
P2 (I) g P1. The byte array that is used as a print buffer to accept the strin

P3 (I/C) The byte position in the print buffer to put the string. The byte position counts from 0.
 a string at the beginning of the print buffer, set P3 to 0. For example, to print

Example 1

$U10 = “Weight:”
P2B($U100, $U10, 0) /* Print the string “Weight:” at the position of byte 0 of the print buffer. */

ld e string “12.34” after this command is

int buffer. */
1
B 10, 14) /* Print the string “kg” at the position of byte 14 of the print buffer. */

PRI) /* Print string “Weight: 12.34 kg” in the print buffer to the real printer. */

BLANK($U100, 20) /* Blank the print buffer. */

$U10 = I2A(1234, 2) /* The byte array $
executed. */

U10 will ho th

P2B($U100, $U10, 8) /* Print the string “12.34” at the position of byte 8 of the pr
$U
P2

0 = “kg”
U($U100, $

NT($U100, 20

P2B_R

Format P1 ,P3) = P2B_R (P2 Data Type U

Function Print fer P2. The string is right aligned with the byte
pos

s the null-terminated string P1 to the print buf
ition P3.

P1 (I) The byte array that holds the string to be printed.
P2 (I) used as a print buffer to accept the string P1. The byte array that is

P3 (I/C)

. The byte position

cters at the beginning of the print buffer, set P3 to 5 as the
laced at the position of byte 5.

The byte position in the print buffer that the last characters of the string is placed
counts from 0.
For example, to print a string with 6 chara
last character of the string should be p

Example 1

BLANK($U100, 20) /* Blank the print buffer. */
$U10 = “Weight:”
P2B_R($U100, $U10, 6) /* Print the string “Weight:” to the print buffer and align the string right with
the position of byte 6. */
$U10 = I2A(1234, 2) /* The byte array $U10 will hold the string “12.34” after this command is
executed. */
P2B_R($U100, $U10, 12) /* Print the string “12.34” to the print buffer and align the string right with
the position of byte 12. */
$U10 = “kg”
P2B_R($U100, $U10, 15) /* Print the string “kg” to the print buffer and align the string right with the
position of byte 15. */
PRINT($U100, 20) /* Print string “Weight: 12.34 kg” in the print buffer to the real printer. */

14

14-52 CHAPTER 14 USING MACROS

20. S

SOUND

14.4. ound Operation

Format D (P1,P2,P3) SOUN Data Type U

Function Plays the sound P1.

P1 (I/C)
The identifier of the sound to be played.

unds and their identifiers are defined in t und table of the panel application. Note: The so he so

P2 (I/C) specified sound to be played The number of times you want the sound to be played. If you want the
just once, set P2 to 1.

P3 (I/C) time unit is 100 ms (0.1 second). If you do not The break time between two consecutive plays. The
want any break between two plays, set P3 to 0.

Example 1 k of 0.3 second between two SOUND(10, 5, 3) /* Play the sound #
consecutive plays. */

10 5 times with a brea

STOP_SOUND

Format STOP_SOUND

Function Stops playing the current sound.

Example 1 STOP_SOUND /* Stop playing the current sound.*/

	14.1. Types of Macros
	14.2. Working with Macros
	14.2.1. Creating Macros
	14.2.2. Opening and Closing Macros
	14.2.3. Naming a macro
	14.2.4. Deleting a macro
	14.2.5. Saving and Exporting Macros
	14.2.6. Macro Settings in the Dialog

	14.3. Writing Macros
	14.3.1. Macro Editor Window
	14.3.2. Macro Command Properties Tool Window

	14.4. Macro Commands and Examples
	14.4.1. Macro Notations and Terminology
	14.4.2. Data Transfer
	Assignment (=)
	Logical NOT (= !)
	" "
	MOV
	SETM

	14.4.3. Arithmetic Operation
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Modulus (%)

	14.4.4. Logical Operation
	Bitwise Inclusive OR (|)
	Bitwise AND (&)
	Bitwise Exclusive OR (^)
	Left Shift (<<)
	Right Shift (>>)
	Logical AND (&&)
	Logical OR (||)

	14.4.5. Calculation
	MAX
	MIN
	BMAX
	BMIN
	SUM
	XSUM
	SWAP

	14.4.6. Data Conversion
	BCD
	BIN
	DW
	W
	B2W
	W2B
	A2X
	X2A
	W2F
	D2F
	F2W
	F2D
	EXTRACT_BIT

	14.4.7. Conditional Operation
	IF ==
	IF !=
	IF >
	IF >=
	IF <
	IF <=
	IF &
	IF !&
	IF <bit>
	IF !<bit>
	ELIF ==
	ELIF !=
	ELIF >
	ELIF >=
	ELIF <
	ELIF <=
	ELIF &
	ELIF !&
	ELIF <bit>
	ELIF !<bit>
	ELSE
	ENDIF

	14.4.8. Program Control
	JMP
	<label>
	JMP ==
	JMP !=
	JMP >
	JMP >=
	JMP <
	JMP <=
	JMP &
	JMP !&
	JMP <bit>
	JMP !<bit>
	CALL
	RET
	FOR
	NEXT
	STOP
	END

	14.4.9. Timer Operation
	SET_T
	STOP_T
	WAIT_T

	14.4.10. Keypad Operation
	KB_MCR
	KPD_TEXT

	14.4.11. Recipe Operation
	RB2ROM
	ROM2RB
	REF_RCP_OBJ

	14.4.12. Communication Operation
	EN_LINK
	LINK_STS

	14.4.13. System Service
	GET_RTC
	SET_RTC
	SYS

	14.4.14. Screen Operation
	OPEN_WS
	CLOSE_WS

	14.4.15. File Operation
	FILE_IO
	FILE_IO_N
	MKDIR
	OPEN_FILE
	READ_FILE
	WRITE_FILE
	CLOSE_FILE
	DELETE_FILE
	RENAME_FILE
	GET_VOL_INFO
	READ_CSV　
	READ_CSV_STR　

	14.4.16. Comparison
	==
	!=
	>
	>=
	<
	<=

	14.4.17. String Operation
	STRCPY
	STRCAT
	STRLEN
	STRCMP
	STRICMP
	STRNCMP
	STRCHR
	NUM2STR
	TIME2STR
	DATE2STR
	TD2STR
	I2A
	A2I
	F2A
	A2F

	14.4.18. Run Operation
	RUN
	RUNW

	14.4.19. Print Operation
	PRINT
	PRINT_SCREEN
	BLANK
	P2B
	P2B_R

	14.4.20. Sound Operation
	SOUND
	STOP_SOUND

