CHAPTER 14

USING MACROS

14,1, TYPES OF MACKOS ..ottt 1
14.2. WOrKking WIith IMaCK0S..........cciiiiiiiiiiie et 3
it T O 1= U o TNV Vo 0 LSS 3
14.2.2. Opening and ClOSING IMACIOSccuviurieerieeieseeseeiesee e eee e e sae e sreeeesneesreeseeenee e 3
14.2.3. NAMING 8 MACK0....ccuviutititiiteate ettt ettt e et b et et et e b e b e e se e e e e e b e b sbenbe e 4
14.2.4. DeIEtiNG @ MACTO......eiuiiieiiieitiiti sttt b bbbttt nb et nre s 4
14.2.5. Saving and EXPOrtiNg MACIOScoiueieiirrieniesie ettt sbe e enes 4
14.2.6. Macro Settings in the DIAlogccoiiiiiiiiiieiee e 5
14.3. WIITING IMIACKOS......cotiiiiiiiiie ettt sttt sne e nneennee s 7
14.3.1. MacCro EditOr WINAOWooiiiiiiiiieieiee s 7
14.3.2. Macro Command Properties TOOI WINUOWcccccevvereiiieiieiecee e 9
14.4. Macro Commands and EXamples.........ccccveiieiiiiii i 10
14.4.1. Macro Notations and TErmMINOIOGYcccuereriirieiiiie e 10
14.4.2. Data TrANSTEE ..ottt sb et sb e e besnee e 12
14.4.3. ArthMEtiC OPEIatiONccuiiuie ittt ettt sbe b sneenreas 13
i oo [0% LI @] o =T -1 o] o ISR OS SRR 14
T OF: 1 (011 - o] o SO U PRSPPSO 16
14.4.6. Data CONVEISION ...ocviiiiiieiieiiesie st sttt sttt sttt e e sbe st b s besbeebe e aseeneenens 18
14.4.7. Conditional OPEIatiONcvcveiieiieie et sre e esreeeas 21
14.4.8. Program CONLIOlcccueiieiiiic et sre e e e nneeneas 25
14.4.9. TIMEr OPEIAtION.....ieiiiieiieie et et et e e e e e et e e e s e e te e e e sreesbeeseeaseesraeneeaneesneees 28
14.4.10. Keypad OPEIatiONccueiveiuiriiiiisiesiieieeeee sttt sttt ettt bbb nens 29
14.4.11. RECIPE OPEIALIONveeiiiiieieieeete sttt bbbttt ne e bbbt 30
14.4.12. ComMMUNICALION OPEIAtION.......uiitieiiiieiiierieeie sttt st et sbeesaesnee e 31
14.4.13. SYSTEIM SEIVICE. ...c.veeuiiitieiteeite ettt ettt sttt ettt se e sbe e te e st e s be et e e neesbeesbeentesneesaeennas 32
14.4.14. SCrEEN OPEIALIONviiiieieieie ettt sttt ee sttt bt esbe et e sseesbeesbesreesbeeneesneenreas 33
O LT 1 (S @ 1= - L1 o] o SRR OSOPTR 34
T O 1 T o 1 £ o RSP 40
14.4.17. SErINQG OPEIALION.cviiie ittt ettt e s te et e s reesbe e e e sreesbeeneesneesres 41
14.4.18. RUN OPEIALION.....eiuiiiiieieiie sttt ee sttt e e e e a et e et e ste e teeseesseesbeaseesseesseeneeaneenneeneas 49
T o 4 0 A T = U1 o] PSS OR SRR 50
14.4.20. SOUNT OPEIALIONecvviiieieeiecieesteeeeee e ee e te e e e steete s e staebesseesreesseereesseensesneesreas 52

14

This chapter explains how you can write macros to perform operations. A macro contains a sequence of macro commands
and acts as a simple computer program when it is run. With macros, some tasks that are hard to be performed by the
objects can be easily achieved, such as scheduling, data exchanges, conditional operations, and sequential operations.

Note: Do not use macros to control systems that can cause life-threatening and serious injury.

Note: The real-time OS in the HMI needs to manage multiple tasks at the same time when the application is running. In
order to not affect the whole performance, please keep the macro as short as possible.

Note: Macros execute individually and are unaware of other macros. When sharing common variables between macros,
your application may have possible conflicts. Consider an application where the cycle macro updates the value of an
address which is used by the event macro. If the event macro alters the address value before the cycle macro uses
that address, the result of the cycle macro will be incorrect.

14.1. Types of Macros

m Global Macro

A global macro is a macro that can be used by all panel applications in the same project. With global macros, the panel
applications in the same project can share common functions without having to keep and maintain the same set of macros
locally.

You can set up a password in the Project Information & Protection dialog box to protect global macros. If global macros are
under protection, you need to enter a password to remove the protection before using them in your application.

Note that only internal variables can be used in global macros.

m Local Macro
A local macro is a macro that can only be used by the panel application which the macro is located in.

m Sub-macro

A sub-macro is a macro that can be run by other macros using the CALL command. When a CALL command is
encountered while running a macro, that macro stops running, and the sub-macro starts to run. The last command of a
sub-macro must be a RET command which terminates the sub-macro and returns control to the calling macro. You can
place RET commands at any location you want. The HMI will resume the execution of the calling macro starting with the
command following the CALL command once the called sub-macro terminates.

By implementing common functions in sub-macros for other macros to use, your macros can be modularized, are sharable,
easy to read, and easy to maintain.

m Startup Macro, Main Macro, Event Macro, Time Macro for the application
m Open Macro, Cycle Macro, Close Macro for the screen
= On Macro, Off Macro, Object Macro for the object

Select the macro that works best for the occasion you want the macro to run, and for the purpose you want the macro to
do.

Run the Macro: Use:

When the application starts Startup Macro

This macro is run only once when the application starts. The HMI will not display the
start-up screen until the macro terminates. You can use Startup Macro to initialize
global data and settings for your application. Specify Startup Macro in Panel General
Setup dialog box.

While the application is Main Macro

running This macro is run all the time while the application is running. The HMI runs Main
Macro cyclically, i.e. it will delay preset time to run Main Macro starting from the first
command again each time after it completes the processing of the last command of
the macro or when it encounters an END command in the middle of the macro.
Specify Main Macro in Panel General Setup dialog box.

Continued

14-1 CHAPTER 14 USING MACROS

Run the Macro:

Use:

14

When a specific trigger bit
changes from 0 to 1

Event Macro

An Event Macro is run whenever the associated trigger bit changes from 0 (off) to 1
(on). An application can have up to four Event Macros which are numbered from 1 to
4. Specify Event Macros in the Panel General Setup dialog box.

Periodically with a preset time
interval

Time Macro

A Time Macro is run periodically with a preset time interval. An application can have
up to four Time Macros which are numbered from 1 to 4. Each Time Macro has a
different set of time interval options you can choose to specify how often you want the
macro to run. Specify Time Macros in the Panel General Setup dialog box.

When a specific screen is
being opened

Open Macro

An Open Macro is run once when the associated screen is being opened. The screen
will not be displayed until the Open Macro terminates. Specify the Open Macro of a
screen in the Screen Properties dialog box.

While a specific screen is
open

Cycle Macro

A Cycle Macro is run all the time while the associated screen is open. The Cycle
Macros runs cyclically, i.e. the Cycle Macro will run starting from the first command
again every time after it completes the processing of the last command of the macro,
or when an END command is encountered in the middle of the macro. The Cycle
Macro terminates immediately when the screen is closed. Specify the Cycle Macro of
a screen in the Screen Properties dialog box.

When a specific screen is
being closed

Close Macro

A Close Macro is run once when the associated screen is being closed. The screen
will not be erased until the Close Macro terminates. Specify the Close Macro of a
screen in the Screen Properties dialog box.

When a specific button is
pressed or released to set a
bit to on

On Macro

An On Macro is run once when the associated button is pressed or released to set a
bit to 1 (on). The setting of the bit will not be performed until the On Macro terminates.
Therefore, it is important to keep the On Macro as short as possible in order to not
delay the setting of the bit. Both the Bit Buttons and the Toggle Switches can have an
On Macro. Specify the On Macro of a button in that button’s configuration dialog box.

When a specific button is
pressed or released to set a
bit to off

Off Macro

An Off Macro is run once when the associated button is pressed or released to set a
bit to 0 (off). The setting of the bit will not be performed until the Off Macro terminates.
So it is important to keep the Off Macro as short as possible in order to not delay the
setting of the bit. Both Bit Buttons and Toggle Switches can have an Off Macro.
Specify the Off Macro of a button in that button’s configuration dialog box.

When a specific object is
activated to perform a specific
operation

Object Macro

An Object Macro is run once when the associated object is activated to perform a
specific operation. Whether the macro is run before or after the operation is
performed depends on the type of the operation. The objects that can have an Object
Macro include Screen Buttons, Function Buttons, and Keypad Buttons. Specify the
Object Macro of an object in that object’s configuration dialog box.

CHAPTER 14 USING MACROS 14-2

14

14.2. Working with Macros

14.2.1. Creating Macros
m Creating a new and blank macro

1) To create a global macro, use the Add... command on the Project > Global Macro menu, or right-click the Global >
Global Macros item in the Project Manager tool window to bring out the pop-up menu and then use the Add Macro...
command on the pop-up menu.

To create a local macro, use the Add... command on the Panel > Macro menu, or right-click the panel application >
Macros item in the Project Manager tool window to bring out the pop-up menu and then use the Add Macro...
command on the pop-up menu, or

2) Inthe New Macro dialog box, type the name you want, and hit the ENTER key or click the OK button to validate your
choice.

= Importing an existing macro as a copy macro

1) To import a macro as a global macro, right-click the Global > Global Macros item in the Project Manager tool window
to bring out the pop-up menu and then use the Import Macro... command on the pop-up menu.

To import a macro as a local macro, right-click the panel application Macros item in the Project Manager tool window
to bring out the pop-up menu and then use the Import Macro... command on the pop-up menu

2) Click the *.mcr or *.txt file you want to create a new macro from. If you want to open a macro that was saved in a
different folder, locate and open the folder first.

3) Click Open.

14.2.2. Opening and Closing Macros

m Opening an existing macro

To open a global macro, select the macro you want to open in Project > Global Macro > Edit menu, or double click the
macro in Global > Global Macros item in the Project Manager tool window, or in the Macro settings of the object
configuration dialog, select the macro that is located after "-------------- Global----------- " item in the drop-down list.

To open a local macro, select the macro you want to open on Panel > Macro > Edit menu, or double click the macro in the
panel application > Macros item in the Project Manager tool window, or in the Macro settings of the object configuration
dialog. If global macros exist, select the macro that is located from the beginning to " Global "item in the
drop-down list or select the macro in the drop-down list.

m Opening a *.txt or *.mcr file within the macro editor window:

You may do the drag-and-drop operation:

1) Open the macro editor window by clicking any of the existing macros.

2) Drag a selection of *.mcr file or *.txt file into the macro editor window and drop it.

Note: Any macros in the macro editor window will be replaced by macros from the source file.

m Closing Macro Editor Windows:

To close a single window, select the window and click the close button.

To close all windows, choose Windows... on the Window menu, select all the macro editor windows you want to close in
the window dialog and then click Close Window(s) button.

Note: The Macro Command Properties Window will be closed automatically when the macro editor window is closed. Even
if the macro editor window is closed, all the changes will be saved, unless the software exits without saving any changes to
the file.

m Closing Macro Command Properties Window:

To close the macro command properties window, click the close button on the Macro Command Properties window or
check/uncheck the Macro Command Properties command on the View menu

14-3 CHAPTER 14 USING MACROS

14.2.3. Naming a macro

When adding a new macro for global use or for the panel application, you need to specify the macro name with the
following dialog.

Hew Nacro %

tacro Mame: ||

Specify the macro name here. The
maximum length for a macro name is 256
—»| characters. Macro names are case
insensitive. For example, the names TURN
ON and turn on are considered to be the
same.

When importing a file as the macro, the file name will be the macro name as the default.

In each panel application, the local macro name has to be unique, but a local macro name can be the same as a global
macro name.

= Renaming a macro from Project Manager:

1) Locate the macro you would like to rename

2) Right-click on the macro to display the macro item's pop-up menu; and then click Rename, the second menu item.
3) Once the macro name is selected, simply type the new name over the selected text, and then press the ENTER key.

14.2.4. Deleting a macro

m Deleting a macro from Project Manager tool widow:
1) Locate the macro you would like to delete
2) Right-click on the macro to display the macro item's "pop-up menu"; and then click Delete, the third menu item.

m Deleting a macro by menu

To delete a global macro, choose Project menu, click Global Macro sub-menu, and select the macro you want to delete on
the Delete sub-menu

To delete a local macro, choose Panel menu, click Macro sub-menu, and select the macro you want to delete on the
Delete sub-menu

Note: You can only select one macro to delete at a time. If the macro you want to delete is used by an application or object,
you will be asked to confirm the delete operation.

14.2.5. Saving and Exporting Macros

If you have a macro you want to reuse in another application panel, you can export the macro as a .txt file or a .mcr file.
You may do the following:

1) Locate the macro you would like to export

2) Right-click on the macro to display the macro item's "pop-up menu"; and then click Export Macro..., the fourth menu
item.

3) If you want to save a macro in a different folder, locate and open the folder first, then click Save.

CHAPTER 14 USING MACROS 14-4

14

14.2.6. Macro Settings in the Dialog

You can open and edit a specified macro or create a new macro in the configuration dialog that contains the macro page.
The following is an example of the Macro page in the Bit Button configuration dialog.

-

b acro Mame: iI_est vl Hew. ..

[a 5US020-300-((511-8)/16)

1 SL2=(((S11-8)/1B)*16)+8 [$0[$12+0]= MOV($U[$12+1E]16)

2 FOR sUS020

a3 5U[5I2+D]=|MD‘J($U[512+15],15] Command: 11"1 = MOV (P2, P3) _T_j
. sIz2= sI2+16

e Data Type: | (U] 16-bit Unsigred v |
& END Par PT: [$U[g1240) (=E

Par P2 |$LI[$2+16] BE
Par P2 |16 (=]

Operation:;
Copies P3words of P2 to P1.

Parameters:

Type Description

The starting location
P1 |IlE of the memary to
receive the copy.

The starting location "

[ok,] [Cancel] [Help *
The following table describes each property in the General page.
Property Description
Macro Name Select an existing local macro or global macro from the drop-down list. The following is a
sample in the dropdown list
Test A
oW Local Macros
S¥ SCEEEHD
2% SCEEEN1
gw ggg%g A separator that is used to
separate the local macros
Flobal |< and global macros. It shows
Hr-;nitnr l Global Macros on_ly when global macros
Debug exist.
New... Click the button to bring out the New Macro dialog box to create a new and blank local macro.
Continued

14-5 CHAPTER 14 USING MACROS

Property

Description

Macro Editor

Write and edit the macros here. For details, see Section 14.3.1. If the editor window is too

Window small, you may drag out the window and resize it. To drag and move the window, left-click
anywhere on the window frame and hold down the button, then drag the mouse to move the
window outside to another area. It will “float” over the rest of the dialog, allowing you to position
it wherever you want it to be. Release the mouse button to let go of the window. Click on the
resized tabs located at the bottom right corner of the window to resize the window. Press the
close button to dock the window back into the dialog. The following is a sample of the floating
macro editor window.

Macro Mame: |Test v
/ Click anywhere on
1 the window frame to
0 |SUS020=300-((311-8)~16) drag out the window.
1 SI2=(((SI1-B)-16)*16)+8
2 |FOR sUS020
3 SU[SI2+0]=|MOV(SU[SI2+16],16)
1 sI2= 5I2+16 Click the close button
5 [NEXT N to dock the window
6 __|END back into the dialog.
Click here to resize
] the window.
Properties A floating dialog allows you specify the macro command. For details, see Section 14.3.2. The

macro command properties dialog can be moved anywhere and resized to any size you want.
However, it can’t be closed until the dialog is closed.

CHAPTER 14 USING MACROS 14-6

14

14.3. Writing Macros

In the software, all the macros can be written in the macro development environment that is composed of two elements:
the Macro Editor Window and the Macro Command Properties Tool Window.

You will see the following sample of the Macro Development Environment when opening a macro from Project Manager.

Macro Command
Properties Tool Window

|| Properties / B X

/

Macro Editor Window

B Macro — Monitor IF [wfd +588] = PWE + W 7]
0 w100 0.3=50U0 - 10,75 (F)
1 W10Z = (SU0 + sU2) = (S04 + sUs) (F) Command: [TF P23 |
2 Sirlo0 = Sir10l1 = 0x 192 _ —
Drata Twpe: | (U] 16-kit U d
3 Wl04 = SU200 % (SU402 + SUL06) (SD) a2 fspe: | L) T6-bit Unsigne hd
4 W2 = W0 + W1
5 W3 = (W0 + W1+ W2)/3 Pt P2 |14+
3 Wo = MAX (W2, W3) .
Par. P3: B +W7
7 A Injection action display start i W + /7]
a Wo = (SU30 + W50 - 1000y - 2 (3D)
IF |iwd + WS) > (W6 + W7)
sSuU2.0 = su0 o= g1 _ A
IF sU2.0 || (sU4 1= sUS) Operation:
sUz.1 = 1 (B) Executes the commands in the
ELSE command block following this IF
command when P2 is greater than
sUZ.1 = 0 (B) P3.
ENDIF
ENDIF Parameters:
S Injection action display end T - -
W10.2 = Wi0.0 ~ (sU0.0 & SUD.17 (B} - Sl
he pP? P2 luFiciaF The v/

14.3.1. Macro Editor Window

The macro editor is a text-based editor with syntax coloring and line numbering. Line numbering in the left margin of the
page helps you refer to the specific position of the macro. Syntax coloring gives you visual cues about the structure by
using different colors for various elements, such as keywords in black, comments in green, addresses in blue and
constants in red.

m Editing Macro

With the macro editor, you can cut, copy, and paste selected text using menu commands, key combinations or
drag-and-drop operations. You can also undo and redo selected editing actions.

You can right-click to display a pop-up menu of editing commands. The editing commands available depend on what the
pointer is pointing to.

14-7 CHAPTER 14 USING MACROS

14

The macro editor allows the following editing actions:
e Cutting, copying, pasting, and deleting selection of lines, multiple lines or text
e Undoing and redoing editing actions
e Using drag-and-drop editing to move or copy a selection of text within one macro editor window, or between macro
editor windows.

The following table shows the supported editing commands.

Menu Command Key Combination Description
Cut CTRL+X Removes selected text from the active macro editor window.
Copy CTRL+C Duplicates selected text in the active macro editor window.
Paste CTRL+V Pastes cut or copied text into an active macro editor window.
DELETE Deletes text without copying it to the Clipboard.
Undo CTRL+Z Reverses the last editing action.
Redo CTRL+Y Reapplies the prior editing that has been undone.
CTRL+A Selects all texts in the active macro editor

Note that all editing commands require a selection in order to work. Some commands can make a selection based on the
current cursor location.

m Using Comments in Macros

Comments are notes to be ignored when running the macro commands. Macro supports both single-line comments and
block comments. Single-line comments begin with two forward slashes (//) and run to the end of the line.

The following is an example of a macro command followed by a single-line comment.

IF $U0.0 (B) // Key Down

Block comments begin with an opening delimiter (/*) and run to a closing delimiter (*/). Comments do not nest.
The following is an example of a block comment.
/* $N1001=WH2021

$N1010=$N1001 */

m Specifying Constants in Macros

To specify a hexadecimal number, use either the h or H suffix. For example, 12abH and 3ABh are valid hexadecimal
numbers. You can also use either the “0x” or “0X” prefix. For example, 0x1278abc and OXFFFF0000 are valid hexadecimal
numbers.

To specify a binary number, use either the b or B suffix. For example, 001100111b and 11110000B are valid binary
numbers.

For decimal numbers, in most cases, you just type the numbers as they are to specify the constants. However, ambiguity
exists when a constant is the same as a valid external variable. For example, if a panel application has a link to a Modicon
ModBus slave device, it is impossible to tell whether the number 40001 is a constant or a word address of the controller. To
avoid this kind of ambiguity, use the following methods to explicitly declare that a number is a constant:

1) Use K, k, D, or d suffix for an integer number. For example, -123K and -123d are valid specifications of constant -123.
2) Use either the f or F suffix for a decimal number with decimal point. For example, -12.3F and -12.3f are valid
specifications of constant -12.3.

CHAPTER 14 USING MACROS 14-8

14

14.3.2. Macro Command Properties Tool Window

The Macro Command Properties Tool Window help you add and modify a macro command quickly and easily.

If you open a macro from Project Manager or Menu Item, the Macro Properties Tool Window will be opened as a docking

window. You can easily configure the dockable tool window to automatically be displayed or hide, or tab link with other tool
windows, or dock against the edges, or float over. When the Macro Editor is opened, you can also choose to open or close
the Macro Command Properties Tool Window by clicking the [Macro Command Properties] menu item under [View] menu.

If you open the macro from an object's configuration dialog box, the Macro Properties Tool Window will float beside the
Macro Editor and can be moved anywhere, but it can't be closed.

The following table describes each property in the macro command properties tool window.

Property Description

Command Click the dropdown list box to bring up the macro command selection dialog. In the dialog,
navigate the keyword of macro commands through tabs and sections by moving the
mouse and then clicking the selection. The format of the selected macro command will be
shown in the dropdown list after the dialog is closed. To cancel the operation, click
anywhere outside the macro command selection dialog.

Data Type Selects the data type of the macro command from the dropdown list. Different macro
commands support different data types. The supported data types for each macro
command are some of the following: (S) 16-bit Signed, (U) 16-bit Unsigned, (SD) 32-bit
Signed, (UD) 32-bit Unsigned, (F) 32-bit Floating Point, (B) Bit.

Parameter | <Edit Specifies the bit variable when the Data Type is (B).

Box> Specifies the word variable when the Data Type is (U)/(S).
Specifies the double-word variable when the Data Type is (UD)/(SD)/(F).
Click this icon to bring up the Address Input Keypad and specify the desired address for
the Variable field.
Click this icon to bring up the Select Tag dialog box and select the desired tag for the
Variable field.
Macro Command Help Shows the operation and parameter type of the selected macro command.

Note that any modification in the dialog will change the current macro command in the Macro Editor.

14-9

CHAPTER 14

USING MACROS

14.4. Macro Commands and Examples

14.4.1. Macro Notations and Terminology

The following notations and terminology will be used in the Macro Commands and Examples sections.

= Notations

1) P1, P2, P3, P4, P5: Parameters of macro commands.
2) I, E, C, A CS, M, AE, CE: Used to indicate the type of parameter a macro command can accept for a specific

command parameter.

Abbreviation Parameter Type

I Internal Variable

E External Variable

C Constant

A ASCII character string

CSs Character string of the program label
M Sub-macro name

AE Arithmetic expression

CE Comparison expression

3) U, S, UD, SD, F, B: Used to indicate the types of data a macro command can support.

Abbreviation Data Type

U 16-bit Unsigned Integer
S 16-bit Signed Integer
ubD 32-bit Unsigned Integer
SD 32-bit Signed Integer

F 32-bit Floating Point

B Bit

= Terminology

Terminology

Definition

Internal memory

The memory space in the HMI that can be accessed by the panel application. For example,
the user memory $U, the non-volatile memory $N, the system memory $S, and the recipe

memory $R are all parts of the internal memory.

Internal variable

An address or a tag referring to an address of a space in the internal memory.

Internal bit variable

An internal variable that refers to a bit in the internal memory.

For ease of reading, “internal variable” is used instead of “internal bit variable” when referring

to a bit if there is no ambiguity.

Internal word variable

An internal variable that refers to a word in the internal memory.

The variables can also be used to refer to a double-word, a block of bytes (byte array), a block
of words (word array), and a block of double-words (double-word array).

For ease of reading, “internal variable” is used instead of “internal word variable” when
referring to a word or a block of memory space if there is no ambiguity,

External memory

The memory space or collection of addressable devices in the controllers that can be

accessed by the panel application through communication links.

Continued

CHAPTER 14 USING MACROS 14-10

Terminology Definition

External variable An address or a tag referring to an address of a space in the external memory.

External bit variable An external variable that refers to a bit in the external memory.

For ease of reading, “external variable” is used instead of “external bit variable” when referring
to a bit if there is no ambiguity.

External word An external variable that refers to a word in the external memory.

variable The variables can also be used to refer to a double-word, a block of bytes (byte array), a block
of words (word array), and a block of double-words (double-word array) if the access unit of
the associated addresses is word. If the access unit is double-word, you can only use the
variable to refer to a double-word or a block of memory space with a length of a multiple of 4
(bytes).
For ease of reading, “external variable” is used instead of “external word variable” when
referring to a word or a block of memory space if there is no ambiguity,
Expression
Type Abbreviation Description

Arithmetic AE Sequences of operators and parameters that are

Expression used for computing a value from the parameters.

Comparison CE Sequences of operators and parameters that are

Expression used for comparing value from the parameters.
The software provides the following types of operators for macro expressions:

Operators Name or Meaning Grouping Used for

() Parentheses Left to right AE/CE

* Multiplication Left to right AE

/ Division Left to right

% Modulus Left to right

+ Addition Left to right

- Subtraction Left to right

<< Left shift Left to right

>> Right shift Left to right

< Less than Left to right CE

> Greater than Left to right

<= Less than or equal to Left to right

>= Greater than or equal to Left to right

== Equality Left to right

I= Inequality Left to right

& Bitwise AND Left to right AE

A Bitwise exclusive OR Left to right

| Bitwise inclusive OR Left to right

&& Logical AND Left to right CE

Il Logical OR Left to right CE

= Assignment Right to left AE/CE

Note: The above table lists the operators in order of precedence (from highest to lowest
precedence). Operators in the same segment of the table have equal precedence and are
evaluated in the given order in an expression unless explicitly forced by parentheses.

14-11 CHAPTER 14 USING MACROS

14.4.2. Data Transfer

Assignment (=)

Format P1=P2 Data Type | U/S/UD/SD/F/B
Function Assigns the value of P2 to P1.

P1 (I/E) The destination.

P2 (I/E/C/AE) The source.

Example 1 $U2 = 123.45 (F) /* Assign 123.45 to $U2 (and $U3) */

Example 2 $U100.f = 1 (B) /* Turn on the specified bit */

Example 3 W60 = ($U30 + $W50 - 1000) / 2 (SD) /* Write the result of the arithmetic expression to W60. */
Example 4 V0.0 = 2\MO (B) /* Assign the bit value of MO of link 2 to the bit V0.0 of link 1*/

Logical NOT (=1)

Format P1=1P2 Data Type B

Function Reverses P2 and saves the result in P1.

P1 (I/E) The location to save the result.

P2 (I/E) The operand.

Example 1 $U2.3 =13U3.4 (B) /* If $U3.4 is 1 (On), $U2.3 is 0 (Off) */

Format P1="p2"

Function Copies the quoted ASCII character string P2 to P1. Note that the string is a null terminated string.
If the length of the string is N then N+1 bytes will be copied to P1 and the last byte is 0.

P1(I) The location to save the result.

P2 (A) The quoted ASCII character string.

Example 1 $U60 = "TEST" /* The null character (00h) will be moved to the low byte of $U62 */

Example 2 $U20 = "ABCDE" /* The null character (00h) will be moved to the high byte of $U22 */

MOV

Format P1=MOV(P2,P3) Data Type)

Function Copies P3 words of P2 to P1.

P1 (I/E) The starting location of the memory to receive the copy.

P2 (I/E) The starting location of the memory to be copied.

P3 (1/C) The number of words to be copied.

Example 1 $U100 = MOV($U200, 16) /* Copy the 16 words starting from $U200 to $U100 */

Example 2 W60 = MOV($U200, $U2) /* Copy the word array starting from $U200 with the size specified in
$U2 to W60.*/

Example 3 $U10 = MOV(2\D100,10) /* Copy D100 ~ D109 of link 2 to $U10 ~ $U19.*/

CHAPTER 14 USING MACROS 14-12

14

SETM
Format P1=SETM(P2,P3) Data Type U
Function Sets P3 words of P1 to word value P2.
P1 (I/E) The starting location of the memory to be set.
P2 (1/C) The set value or the location that holds the set value.
P3 (1/C) The number of words to be set. The max. no. of words are 512.
Example 1 $U100 = SETM(0, 16) /* Set the 16 words starting from $U100 to 0. */
Example 2 W60 = SETM($U200, $U2) /* Set the words of the word array starting from W60 with the size
specified in $U2 to the value of $U200.*/

14.4.3. Arithmetic Operation

Addition (+)
Format P1=P2+P3 Data Type | U/S/UD/SD/F
Function Adds P2 and P3 and saves the result in P1.
P1 (I/E) The location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U100 = $U101 + $U102 (V)
Example 2 W100 = 0.3*$U0 + 0.1*$U2 + 0.6*$U4 (F)

Subtraction (-)

Format P1=P2-P3 Data Type | U/S/UD/SD/F
Function Subtracts P3 from P2 and saves the result in P1.

P1 (I/E) The location to save the result.

P2,P3 (I/E/C/AE) The operands.

Example 1 $U100 = $U101 - $U102 (V)

Example 2 W100 = 0.3*$U0 - 10.75 (F)

Multiplication (*)

Format P1=P2*P3 Data Type | U/S/UD/SD/F
Function Multiplies P2 by P3 and saves the product in P1.
P1 (I/E) The location to save the product. If the product overflows, the higher bits exceeding the limit will

be truncated and the remaining bits will be stored in P1.

P2,P3 (I/E/C/AE)

The operands.

Example 1

$U100 = $U102 * 0x192

Example 2

W100 = ($UO + $U2) * ($U4 + $U6) (F)

14-13 CHAPTER 14 USING MACROS

Division (/)

Format P1=P2/P3 Data Type | U/S/UD/SD/F
Function Divides P2 by P3 and saves the quotient in P1.

P1 (I/E) The location to save the result.

P2,P3 (I/E/C/AE) The operands.

Example 1 $U100 = $U101 / $UL02 (V)

Example 2 W100 = ($U0 + $U2) / (U4 + 3U6) (F)

Modulus (%)

Format P1=P2 %P3 Data Type | U/S/UD/SD
Function Divides P2 by P3 and saves the remainder in P1.

P1 (I/E) The location to save the result.

P2,P3 (I/E/C/AE) The operands.

Example 1 $U100 = $U30 % 16(U)

Example 2 W100 = $U200 % ($U402 + $U106) (SD)

14.4.4. Logical Operation

Bitwise Inclusive OR (|)

Format P1=P2]|P3 Data Type | U/UD/B
Function Performs bitwise Inclusive OR operation of P2 and P3 and saves the results in P1.
P1 (I/E) The location to save the result.
P2,P3 (I/E/C) The operands
Example 1 W60 =1111000000001111b

$U100 = 0000111100001111b | W60 (U) /* The value of $U100 is 1111111100001111b */
Example 2 B15 =$U1.2 | B14 (B) /* If either $U1.2 or B14 has a value of 1(On), B15 has the value 1(On).

Otherwise, B15 has the value 0(Off)*/

Bitwise AND (&)

Format P1=P2&P3 | DataType | U/UD/B

Function Performs bitwise AND operation of P2 and P3 and saves the results in P1.

P1 (I/E) The location to save the result.

P2,P3 (I/E/C) The operands

Example 1 W60 =1111000000001111b
$U100 = 0000111100001111b & W60 (U) /* The value of $U100 is 0000000000001111b */

Example 2 B15 = 3U1.2 & B14 (B) /* If both $U1.2 and B14 are 1(On), B15 is set to 1(On). Otherwise B15 is
set to O(Off) */

CHAPTER 14 USING MACROS 14-14

14

Bitwise Exclusive OR (")

Format P1=P2AP3 Data Type u/ub/B

Function Performs bitwise Exclusive OR operation of P2 and P3 and saves the results in P1.

P1 (I/E) The location to save the result.

P2,P3 (I/E/C) The operands

Example 1 W60 =1111000000001111b
$U100 = 0000111100001111b ~ W60 (U) /* The value of $U100 is 1111111100000000b.*/

Example 2 B15 = $U1.2 ~ B14 (B) /*If both $U1.2 and B14 are 1(On) or 0(Off), the B15 is set to 0(Off).
Otherwise B15 is set to 1(On)*/

Left Shift (<<)

Format P1=P2<<P3 ‘ Data Type ‘ u/ub

Function Shlifts P2 to the left by P3 bits and saves the results in P1. The operation supports the logic shift
only.

P1 (I/E) The location to save the result.

P2 (I/E/C) The value or the location that holds the value to be shifted.

P3 (I/E/C) The number of bits to be shifted.

Example 1 $U100 = $U101 << 8 (U)

Example 2 W200 = W100 << $U10 (UD)

Right Shift (>>)

Format P1=P2>>P3 Data Type | U/UD

Function Shlifts P2 to the right by P3 bits and saves the results in P1. The operation supports the logic shift
only.

P1 (I/E) The location to save the result.

P2 (I/E/C) The value or the location that holds the value to be shifted.

P3 (I/E/C) The number of bits to be shifted.

Example 1 $U100 = $U101 >> 8 (U)

Example 2 W200 = W100 >> $U10 (UD)

Logical AND (&&)

Format Pl1=P2 && P3 Data Type | B
Function Saves 1in P1 if both P2 and P3 are 1, otherwise saves 0 in P1.

P1 (I/E) The bit to save the result.

P2,P3(I/E/C) The operands.

Example 1 $U100.0 = $U101.0 && $U101.1 (B)

14-15 CHAPTER 14 USING MACROS

Logical OR (||)

Format P1=P2]|| P3 Data Type | B
Function Saves 1 in P1 if either or both P2 and P3 are 1, otherwise saves 0 in P1.

P1 (I/E) The bit to save the result.

P2,P3(I/E/C) The operands.

Example 1 $U100.0 = $U101.0 || $UL01.1 (B)

14.4.5. Calculation

MAX
Format P1 = MAX(P2,P3) Data Type U/S/UD/SD/F
Function Sets P1 to the larger value of P2 and P3.
P1 (I/E) The location to save the result.
P2,P3(I/E/C) The operands.
Example 1 $U100 = MAX(100, 200) /* Set $U100 to 200 */
MIN
Format P1 = MIN(P2,P3) Data Type U/S/UD/SD/F
Function Sets P1 to the smaller value of P2 and P3.
P1 (I/E) The location to save the result.
P2,P3(I/E/C) The operands.
Example 1 $U100 = MIN(100, 200) /* Set $U100 to 100 */
BMAX
Format P1 = BMAX(P2,P3) Data Type | U/S/UD/SD/F
Function Finds the maximum in an array starting from P2 with P3 elements and saves the result in P1.
P1 () The location to save the result.
P2 (1) The starting location of the array.
P3 (1/C) The size of the array.
Example 1 $U100 = BMAX($U200, 16) (F) /* Find the maximum among 16 floating point numbers starting
from $U200 and save the result in $U100 */
BMIN
Format P1 = BMIN(P2,P3) Data Type | U/S/UD/SD/F
Function Finds the minimum in an array starting from P2 with P3 elements and saves the result in P1.
P1 () The location to save the result.
P2 (1) The starting location of the array.
P3 (1/C) The size of the array.
Example 1 $U100 = BMIN($U200, 60) (F) /* Find the minimum among 60 floating point numbers starting from

$U200 and save the result in $U100 */

CHAPTER 14 USING MACROS 14-16

SUM

Format P1=SUM(P2,P3) Data Type U/S/UD/SD/F

Function Calculates the sum of the value in an array starting from P2 with P3 elements and saves the
result in P1.

P1 (1) The location to save the result.

P2 (1) The starting location of the array.

P3 (1/C) The size of the array.

Example 1 $U100 = SUM($U200, 16) (F) /* Calculate the sum of 16 floating point numbers starting from
$U200 and save the result in $U100 */

XSUM

Format P1=XSUM(P2,P3) ‘ Data Type u/ub

Function Calculates one element XOR (Bitwise Exclusive OR) sum of all the P3 elements in an array
starting from P2 and saves the result in P1.

P1 (1) The location to save the result.

P2 (1) The starting location of the array.

P3 (1/C) The size of the array.

Example 1 $U100 = XSUM($U200, 5) (UD) /* Perform XOR sum of 5 32-bit unsigned numbers starting from
$U200 and save the result in $U100. Another expression of XOR sum is $U100 = $U200 »
$U202 ~ $U204 ~ $U206 ~ $U208 (UD) */
$U100 =1001B
$U101 =1100B
$U102 =0110B
$U120 = XSUM($U100,3) /* $U120=0011B */

SWAP

Format SWAP(P1,P2) Data Type U

Function Swaps the low byte and high byte of every word in a word array starting from P1 with P2 words.

P1(I) The starting location of the array.

P2 (1/C) The size of the array.

Example 1 $U120=1111111100000000B
$U121=1000000100000000B
SWAP($U120, 2) /* The value of $U120 will be 0000000011111111B, The value of $U121 will
be 000000010000001B */

14-17 CHAPTER 14 USING MACROS

14.4.6. Data Conversion

BCD
Format P1 =BCD(P2) Data Type | U/UD
Function Converts binary number P2 to a BCD number and saves the result in P1.
P1 (I/E) The location to save the result.
P2 (I/E/C) The binary number to be converted.
Example 1 $U100 = BCD(0x1234) (U) /* The value of $UL100 will be 1234. */
BIN
Format P1 = BIN(P2) Data Type | U/UD
Function Converts BCD number P2 to a binary number and saves the result in P1.
P1 (I/E) The location to save the result.
P2 (I/E/C) The BCD number to be converted.
Example 1 $UL100 = BIN(1234) (U) /* The value of $U100 will be 0x1234. */
Dw
Format P1=DW(P2) Data Type u/s
Function Converts 16-bit number P2 to a 32-bit number and saves the result in P1.
P1 (I/E) The location to save the result.
P2 (I/E/C) The 16-bit number to be converted.
Example 1 $U100 = DW(12345) (S) /* The value of $U100 will be 12345 and the value of $U101 will be 0. */
Example 2 $U200 = DW(-12345) (S) /* The value of $U200 will be -12345 and the value of $U201 will be
OXFFFF. */
w
Format P1=W(P2) Data Type | UD/SD
Function Converts 32-bit number P2 to a 16-bit number and saves the result in P1. The truncation error
may occur.
P1 (I/E) The location to save the result.
P2 (I/E/C) The 32-bit number to be converted.
Example 1 $U100 = W(0x12345678) (UD) /* The value of $U100 will be 0x5678 */
Example 2 $U200 = W(-12345) (SD) /* The value of $U200 will be -12345 */

CHAPTER 14 USING MACROS 14-18

B2W

Format P1=B2W(P2,P3) Data Type | U

Function Converts P3-byte array starting from P2 to a P3-word array and saves the result in P1. All the high
bytes of the word array are set to 0.

P1(I) The location (or the word array) to save the result.

P2 () The byte array to be converted.

P3 (1/C) The size of the byte array.

Example 1 $U200 = Ox45FA
$U201 = OXEB29
$U100 = B2W($U200, 3) /* Convert 3 bytes starting from $U200 to 3 words starting from $U100,
$U100 will be 0xFA, $U101 will be 0x45 and $U102 will be 0x29. */

w2B

Format P1=W2B(P2,P3) Data Type U

Function Converts a word array P2 with P3 elements to a byte array and saves the result in the byte array
P1. The conversion discards the high byte of every element of the word array to form a byte array
with the same number of elements. The array size cannot exceed 256.

P1 (D) The location (or the word array) to save the result.

P2 (1) The word array to be converted.

P3 (1/C) The size of the word array.

Example 1 $U200 = Ox45FA
$U201 = OXEB29
$U202 = 0xC781
$U100 = W2B($U200, 3) /* Convert 3 words starting from $U200 to 3 bytes starting from
$UL00, $U100 will be 0x29FA and the low byte of $U101 will be 0x81*/

A2X

Format P1 = A2X(P2) Data Type | U

Function Converts a 4-digit hex number in ASCII character form to a binary number and saves the result in
P1. The character of the fourth digit is in the first word of the word array P2 and the characters of
the other digits are in the following words in sequence.

P1 () The location to save the result.

P2 () The word array that contains the characters to be converted.

Example 1 $U20=49//'1"
$U21=50//"2
$U22 =69 // 'E'
$U23=70//"F
$U100 = A2X($U20) /* The value of $U100 will be Ox12EF. */

14-19 CHAPTER 14 USING MACROS

X2A

Format P1 = X2A(P2) Data Type | U
Function Converts 16-bit number P2 to a 4-digit hex number in ASCII character form and saves the result
in word array P1. The character of the fourth digit is saved in the first word of P1 and the
characters of the other digits are saved in the following words in sequence.
P1(I) The location (or the word array) to save the result.
P2 (1/C) The number to be converted.
Example 1 $U10 = X2A(0x34AB) /*The 4 words starting from $U10 will be: 51('3"), 52('4"), 65(A"), 66('B") */
W2F
Format P1 =W2F(P2) Data Type | U/S
Function Converts 16-bit number P2 to a floating point number and saves the result in P1.
P1 (I/E) The location to save the result.
P2 (I/E/C) The 16-bit number to be converted.
Example 1 $U200 = W2F($U10) (S)
D2F
Format P1 =D2F(P2) Data Type UD/SD
Function Converts 32-bit number P2 to a floating point number and saves the result in P1.
P1 (I/E) The location to save the result.
P2 (I/E/C) The 32-bit number to be converted.
Example 1 $U200 = D2F($U10) (SD)
F2w
Format P1=F2W(P2) Data Type | F
Function Converts floating point number P2 to a 16-bit number and saves the result in P1.
P1 (I/E) The location to save the result.
P2 (I/E/C) The floating point number to be converted.
Example 1 $U200 = F2W($U10) (F)
F2D
Format P1=F2D(P2) Data Type | F
Function Converts floating point number P2 to a 32-bit number and saves the result in P1.
P1 (I/E) The location to save the result.
P2 (I/E/C) The floating point number to be converted.
Example 1 $U200 = F2D($U10) (F)

CHAPTER 14 USING MACROS 14-20

14

EXTRACT_BIT
Format P1 =EXTRACT_BIT(P2,P3) Data Type | U/UD
Function Extracts bit P3 from P2 and saves the result in P1.
P1 (1) The bit to save the result.
P2 (1) The location to extract the bit.
P3 (1/C) The number of the bit to be extracted.
Example 1 $U2.0 = EXTRACT_BIT($U10, 31) (UD) /* Extract bit 31 of the double word $U10 and save the
result in $U2.0 */

14.4.7. Conditional Operation

IF ==

Format

IF P2 == P3 Data Type U/S/UD/SDI/F

Function

Executes the commands in the command block following this IF command when P2 is equal to
P3.

P2,P3 (I/E/C/AE)

The operands.

IF 1=

Format

IF P2 !=P3 Data Type | U/S/UD/SD/F

Function

Executes the commands in the command block following this IF command when P2 is not equal
to P3.

P2,P3 (I/E/CIAE)

The operands.

IF >
Format IF P2 > P3 Data Type | U/S/UD/SD/F
Function Executes the commands in the command block following this IF command when P2 is greater

than P3.

P2,P3 (I/E/CIAE)

The operands.

IF >=
Format IF P2 >= P3 Data Type | U/S/UD/SD/F
Function Executes the commands in the command block following this IF command when P2 is greater

than or equal to P3.

P2,P3 (I/E/C/AE)

The operands.

IF <
Format IF P2 <P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this IF command when P2 is less than

P3.

P2,P3 (I/E/CIAE)

The operands.

14-21 CHAPTER 14 USING MACROS

IF <=

Format

IF P2 <= P3 Data Type U/S/UD/SD/F

Function

Executes the commands in the command block following this IF command when P2 is less than
or equal to P3.

P2,P3 (I/E/C/AE)

The operands.

IF &
Format IF P2 & P3 Data Type u/ub
Function Executes the commands in the command block following this IF command when the result of

Bitwise AND between P2 and P3 is non-zero.

P2,P3 (I/E/CIAE)

The operands.

IF 1&
Format IF (P2 & P3) Data Type u/ub
Function Executes the commands in the command block following this IF command when the result of

Bitwise AND between P2 and P3 is zero.

P2,P3 (I/E/CIAE)

The operands.

IF <bit>
Format IF P2 Data Type B
Function Executes the commands in the command block following this IF command if the condition P2 is
true (1/0n).
P2 (I/E/CE) The condition.
IF '<bit>
Format IF !P2 Data Type B
Function Executes the commands in the command block following this IF command if the condition P2 is
false (0/Off).
P2 (I/E/CE) The condition.
ELIF ==
Format ELIF P2 == P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is equal

to P3.

P2,P3 (I/E/CIAE)

The operands.

ELIF !=
Format ELIF P2 !1=P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is not

equal to P3.

P2,P3 (I/E/CIAE)

The operands.

CHAPTER 14 USING MACROS 14-22

14

ELIF >
Format ELIF P2 > P3 Data Type U/S/UD/SDI/F
Function Executes the commands in the command block following this ELIF command when P2 is greater

than P3.

P2,P3 (I/E/C/AE)

The operands.

ELIF >=
Format ELIF P2 >=P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is greater

than or equal to P3.

P2,P3 (I/E/CIAE)

The operands.

ELIF <
Format ELIF P2 < P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is less

than P3.

P2,P3 (I/E/CIAE)

The operands.

ELIF <=
Format ELIF P2 <=P3 Data Type U/S/UD/SD/F
Function Executes the commands in the command block following this ELIF command when P2 is less

than or equal to P3.

P2,P3 (I/E/C/AE)

The operands.

ELIF &
Format ELIF P2 & P3 Data Type u/ub
Function Executes the commands in the command block following this ELIF command when the result of

Bitwise AND between P2 and P3 is non-zero.

P2,P3 (I/E/C/AE)

The operands.

ELIF &
Format ELIF (P2 & P3) Data Type u/ub
Function Executes the commands in the command block following this ELIF command when the result of

Bitwise AND between P2 and P3 is zero.

P2,P3 (I/E/CIAE)

The operands.

ELIF <bit>
Format ELIF P2 Data Type B
Function Executes the commands in the command block following this ELIF command if the condition P2
is true (1/0n).
P2 (I/E/CE) The condition.

14-23 CHAPTER 14 USING MACROS

ELIF I<bit>

Format ELIF IP2 Data Type B
Function Executes the commands in the command block following this ELIF command if the condition P2
is false (0/Off).
P2 (I/E/CE) The condition.
ELSE
Format ELSE
Function This command specifies the beginning of the default command block that will be executed if
none of the conditions in the preceding IF and/or ELIF commands is true. This is not an
executable command.
ENDIF
Format ENDIF
Function This command specifies the end of a command block, which begins at the command following
the matching IF, ELIF, or ELSE command. This is not an executable command.
Example IF-Command Structures:

Commands and

Structures DA

IF <condition> Runs the command block between IF and ENDIF when the
condition is true, otherwise ignores the command block.
ENDIF

IF <condition> Runs the command block between IF and ELSE when the
condition is true, otherwise runs the command block between
ELSE ELSE and ENDIF.

ENDIF

IF <condition> Runs the command block between IF and the first ELIF and

ignores all the following commands in the structure when

ELIF <condition 2> condition 1 is true, otherwise examines condition 2. Runs the

- command block between the first ELIF and the second ELIF and
ELIF <condition 3> ignores all the following commands in the structure when

- condition 2 is true, otherwise checks condition 3. Repeats the
same operation until condition N is processed. If none of the
conditions are true, no command block in this structure is run.

ELIF <condition_N>
ENDIF

IF <condition> Runs the command block between IF and the first ELIF and
ignores all the following commands in the structure when

ELIF <condition 2> condition 1 is true, otherwise examines condition 2. Runs the

- command block between the first ELIF and the second ELIF and
ELIF <condition_3> ignores all the following commands in the structure when
condition 2 is true, otherwise checks condition 3. Repeats the
same operation until condition N is processed. Runs the

iELIF <condition_N> command block between ELSE and ENDIF if none of the
conditions are true.

ELSE

ENDIF
Note that there can be up to 20 nested IF-command structures.

CHAPTER 14 USING MACROS 14-24

14

14.4.8. Program Control

JMP
Format JMP P1
Function Unconditionally jumps to the program point specified by label P1.
P1(CS) The label of the program point.
Example 1 IF $U10 ==
JMP SKIP /* Skip the command "$U20 = $U10/ 2". */
ENDIF
$U20 = $U10/ 2
SKIP:
$U10=1
<label>
Format P1:
Function This is not an executable command. The P1 is the label of the program point where it is
positioned.
P1(CS) The character string as the label of the program point. Remember to have the character ':' after
the label.
Example 1 IF$UL10==0
JMP SKIP /* Skip the command "$U20 = $U10/ 2" */
ENDIF
$U20 = $U10/2
SKIP:
$U10=1
JMP ==
Format JMP(P1,P2 == P3) Data Type U/S/UD/SDI/F
Function Jumps to the program point specified by label P1 when P2 is equal to P3.
P1(CS) The label of the program point.
P2,P3 (I/E/C/AE) The operands.

JMP !=
Format JMP(P1,P2 |= P3) Data Type U/S/UD/SD/F
Function Jumps to the program point specified by label P1 when P2 is not equal to P3.
P1(CS) The label of the program point.
P2,P3 (I/E/C/AE) The operands.

JMP >
Format JMP(P1,P2 > P3) Data Type U/S/UD/SDI/F
Function Jumps to the program point specified by label P1 when P2 is greater than P3.
P1(CS) The label of the program point.
P2,P3 (I/E/C/AE) The operands.

14-25 CHAPTER 14 USING MACROS

JMP >=

Format JMP(P1,P2 >= P3) Data Type U/S/UD/SD/F
Function Jumps to the program point specified by label P1 when P2 is greater than or equal to P3.
P1(CS) The label of the program point.

P2,P3 (I/E/CIAE)

The operands.

JMP <
Format JMP(P1,P2 < P3) Data Type U/S/UD/SD/F
Function Jumps to the program point specified by label P1 when P2 is less than P3.
P1(CS) The label of the program point.

P2,P3 (I/E/C/AE)

The operands.

JMP <=
Format JMP(P1,P2 <= P3) Data Type U/S/UD/SD/F
Function Jumps to the program point specified by label P1 when P2 is less than or equal to P3.
P1(CS) The label of the program point.

P2,P3 (I/E/CIAE)

The operands.

JMP &
Format JMP(P1,P2 & P3) Data Type u/ub
Function Jumps to the program point specified by label P1 when the result of Bitwise AND between P2
and P3 is non-zero.
P1(CS) The label of the program point.

P2,P3 (I/E/CIAE)

The operands.

JMP !&
Format JMP(P1,!(P2 & P3)) Data Type u/ub
Function Jumps to the program point specified by label P1 when the result of Bitwise AND between P2
and P3 is zero.
P1(CS) The label of the program point.

P2,P3 (I/E/C/AE)

The operands.

JMP <bit>
Format JMP(P1,P2) Data Type | B
Function Jumps to the program point specified by label P1 if the condition P2 is true (1/0On).
P1(CS) The label of the program point.

P2,P3 (I/E/CE)

The operands.

CHAPTER 14 USING MACROS 14-26

JMP I<bit>

Format JMP(P1,!P2) Data Type ‘ B
Function Jumps to the program point specified by label P1 if the condition P2 is false (0/Off).
P1(CS) The label of the program point.

P2,P3 (I/E/CE)

The operands.

CALL
Format CALL P1
Function Goes to sub-macro P1.

P1 (Sub-macro
name)

The sub-macro to be called.

Example 1 CALL CommonFunction_01 /* Go to sub-macro named CommonFuncation_01 */
RET
Format RET
Function Returns to the calling macro. This command can only be used in sub-macros.
FOR
Format FOR P2 Data Type U
Function Runs the commands within the FOR loop by P1 times. A FOR loop is enclosed by a matching
pair of FOR and NEXT commands. There can be up to 20 nested FOR loops.
P1 (1/C) Total times to run the FOR loop
Example 1 FOR 10
$U100 = $U100 + 1 /* This command will be executed 10 times */
FOR 12
$U200 = $U200 + 1 /* This command will be executed 120 times */
NEXT
NEXT
NEXT
Format NEXT
Function This command indicates the end of a FOR loop. It is not an executable command.
Example 1 Example:
$U1 =10
$U2 =12
FOR $U1
$U100 = $U100 + 1 /* This command will be executed 10 times. */
FOR $U2

$U200 = $U200 + 1 /* This command will be executed 120 times. */
NEXT
NEXT

14-27 CHAPTER 14 USING MACROS

STOP

Format STOP

Function Stops the macro immediately. If the macro is a Cycle macro, it will run again starting from the
first command when the associated window is opened again. If the macro is a Main macro, it will
run again starting from the first command when restarting the application.

This command cannot be used in sub-macros.

END
Format END
Function Indicates the end of macro and stops the macro in the current cycle. It can be put anywhere in a

macro to stop the macro at any point. If the macro is a cyclic macro, such as the Main macro and
the Cycle macro, it is stopped just in the current cycle and will be run again starting from the first
command in the next cycle.

This command cannot be used in sub-macros.

14.4.9. Timer Operation

SET_T
Format SET_T(P1,P2) ‘ Data Type U
Function Starts the timer P1 using the timer control block in P2.
P1(C) The ID of the timer. There are 8 timers available and the IDs are 0 to 7.
P2 (1) The starting location of the memory block (or word array) that is used as a Timer Control Block for the
timer. The structure of the Timer Control Block is shown below:
Word No. Data Item Description
0 Type of operation 0: One-shot; 1: Square-wave
1 Current timer value | The timer increases the value of this word by 1 every
100ms.
2 Timer limit When the current timer value reaches the timer limit, the

timer will perform one of the following operations according
to the type of operation:

1) If the type of operation is One-shot (0), sets the time-up
flag to 1, resets the current timer value to 0, and stops itself.
2) If the type of operation is Square-wave (1), toggles the
time-up flag, resets the current timer value to 0, and
continues the timing operation.

3 Time-up flag This word will be set to 0 or 1 when the current timer value is
equal to the timer limit.

The timer will use the associated Timer Control Block as its private memory, so do not use any words in
the block for other purposes.

A Timer Control Block requires 4 words.

Example 1 | $U100 = 1 /* Type of operation is Square-wave. */

$U101 = 0 /* Initialize the current timer value to 0. */

$U102 = 5 /* Timer limit is 0.5 second (5*100ms). */

$U103 = 0 /* Initialize the time-up flag to 0. */

SET_T(3, $U100) /* Use timer #3 to generate a 1 Hz square wave on $U103.0 */

CHAPTER 14 USING MACROS 14-28

14

STOP_T
Format STOP_T(P1) Data Type)
Function Stops the timer P1.
P1 (C) The ID of the timer.
Example 1 STOP_T(1) /* Stop timer #1 */
WAIT_T
Format WAIT_T(P1) Data Type U
Function Waits for the time-up of timer P1. The macro command following this one will not be executed
until the timer reaches its limit.
P1 (C) The ID of the timer.
Example 1 $U100 = 0 /* Type of operation is One-shot. */

$U101 = 0 /* Initialize the current timer value to 0. */

$U102 =5 /* Timer limit is 0.5 second (5*100ms). */

$U103 = 0 /* Initialize the time-up flag to 0. */

SET_T(7, $U100) /* Starts timer #7 as a 0.5 second timer. */
WAIT_T(7) /* Wait 0.5 second */

14.4.10. Keypad Operation

KB_MCR
Format KB_MCR(P1) Data Type U
Function Accepts or ignores the character/command currently input by the associated keypad button. This
command must be used only in a macro that is run by a keypad button. A keypad button runs the
specified macro when it is pressed. You can use this command in a keypad button macro to
accept or ignore the current input of that button.
P1 (l/C) The value or the location that holds the value to determine the acceptance of the keypad button
input. If the value is 0, the input will be accepted; Otherwise the input will be ignored.
Example 1 KB_MCR(1) /* Ignore the current input */
KPD_TEXT
Format KPD_TEXT(P1) Data Type U
Function The memory block (or byte array) that contains the null-terminated ASCII character string to be
used to initialize the keypad display and buffer.
P1 (1) The memory block (or byte array) that contains the null-terminated ASCII character string to be
used to initialize the keypad display and buffer.
Example 1 $U100 = "initial text"
KPD_TEXT($U100) /* Initialize the keypad display and buffer using the string "initial text". */

14-29 CHAPTER 14 USING MACROS

14.4.11. Recipe Operation

RB2ROM
Format P1 =RB2ROM(P2) Data Type u
Function Saves the data of recipe block P2 to the flash ROM and saves the completion code in P1.
P1 (1) The word to receive the completion code. If the completion code is 0, the operation succeeded;
otherwise the operation failed.
P2 (1/C) The ID of the recipe block to be saved. The option "Need space in flash ROM to save backup"
must be selected for the recipe block.
Example 1 $U10 = RB2ROM(3) /* Save recipe block #3 to the flash ROM. */
ROM2RB
Format P1 =ROM2RB(P2) Data Type U
Function Restores the data of recipe block P2 from the flash ROM and saves the completion code in P1.
P1 () The word to receive the completion code. If the completion code is 0, the operation succeeded;
otherwise the operation failed.
P2 (1/C) The ID of the recipe block to be restored. The option "Need space in flash ROM to save backup”
must be selected for the recipe block.
Example 1 $U10 = ROM2RB(3) /* Restore recipe block #3 from the flash ROM. */
REF_RCP_OBJ
Format REF_RCP_OBJ(P1) Data Type U
Function Refreshes the recipe objects associated with the specified recipe block P1. The recipe objects
include recipe selectors and recipe tables. You can use this command to update the display of
associated objects after changing the data of a recipe block in a macro program.
P1 (1/C) The ID of the associated recipe block.
Example 1 REF_RCP_OBJ(3) /* Refresh the recipe objects associated with recipe block #3 */

CHAPTER 14 USING MACROS 14-30

14

14.4.12. Communication Operation

EN_LINK
Format EN_LINK(P1,P2,P3) Data Type U
Function Enables communication link P1 or sub-link P2 of communication link P1 when P3 is 1. Disables
the specified communication link or sub-link when P3 is 0.
P1 (I/C) The number of the communication link to be enabled or disabled.
P2 (1/C) The node address of the sub-link to be enabled or disabled. If the specified communication link
has no sub-link, this parameter is ignored. If the specified communication link has sub-links and
you want to enable or disable the link itself, set this parameter to 0.
P3 (I/C) To enable the specified communication link or sub-link, set this parameter to 1. To disable the
specified communication link or sub-link, set this parameter to O.
Example 1 ENABLE_LINK(1, 20, 0) /* Disable the sub-link, whose node address is 20, of communication
link 1. */
LINK_STS
Format P1=LINK_STS(P2,P3) Data Type U
Function Gets the status of communication link P2 or sub-link P3 of communication link P2 and saves the
result in P1.
P1 (I/C) The word to receive the status of the specified communication link or sub-link. The status is a
16-bit value. The following table lists the meaning of each status value.
Status Value Meaning Status Value Meaning
0 OK 14 Device busy
1 Overrun error 15 Unknown error
2 Break error 16 Link disabled
3 Parity error 17 Initialization failure
4 Framing error 18 Failed to send data
5 No response 19 Failed to receive data
6 Unrecognized 20 Failed to open connection
response
Timeout 21 Connection not ready
Inactive CTS 22 Invalid sub-link
9 Checksum error 23 Invalid COM port
10 Command rejected 24 Error
11 Invalid address 255 Condition uncertain
12 Invalid range 65535 Failed to get status
13 Invalid request
P2 (I/C) The number of the communication link.
P3 (I/C) The node address of the sub-link. If the specified communication link has no sub-link, this
parameter is ignored.
Example 1 $U100 = LINK_STS(2, 0) /* Get the status of communication link 2 and save it to $U100. */
Example 2 $U12 = LINK_STS(1, 128) /* Get the status of the sub-link, whose node address is 128, of
communication link 1 and save it to $U12. */

14-31 CHAPTER 14 USING MACROS

14.4.13. System Service

GET_RTC
Format GET_RTC(P1) Data Type U
Function Gets the data of the real time clock and saves the result in P1.
P1 (I The starting location of the memory block that is used as an RTC data block to receive the
operation result. The structure of the RTC data block is shown below:
Data Item Data Type/Size Word No.
Second 16-bit Unsigned Integer 0
Minute 16-bit Unsigned Integer 1
Hour 16-bit Unsigned Integer 2
RTC adjustment 16-bit Signed Integer 3
Day 16-bit Unsigned Integer 4
Month 16-bit Unsigned Integer 5
Year 16-bit Unsigned Integer 6
Day of week 16-bit Unsigned Integer 7
Second: 0-59; Minute: 0-59; Hour: 0-23; RTC adjustment: -63-63; Day: 1-31; Month: 1-12; Year:
0(2000)-99(2099); Day of week: 0(Sunday)-6(Saturday)
An RTC data block requires 8 words.
Example 1 GET_RTC($U100) /* Get the data of the real time clock. The second will be in $U100 and the
day-of-week will be in $U107. */
SET_RTC
Format SET_RTC(P1) Data Type U
Function Sets the real time clock using the data in P1.
P1 (1) The starting location of the memory block that is used as an RTC data block to contain the new
settings for the real time clock. See the description of GET_RTC to know the structure of the
RTC data block.
Example 1 $U100 =0 // Second
$U101 = 30 // Minute
$U102 = 8 // Hour
$U103 = 0 // Adjustment
$U104 = 1 // Day
$UL05 =7 // July
$U106 = 10 // Year 2010
$U107 = 4 // Thursday
SET_RTC($U100) /* Set the real time clock to 8:30:00 July 1st 2010 Thursday */
SYS
Format SYS(P1,P2,P3) Data Type)
Function Requests system service P1 with the arguments P2 and P3. This command is reserved for
system use.
P1 () The code of the system service.
P2,P3 (I/C) The arguments of the system service.

CHAPTER 14 USING MACROS 14-32

14

14.4.14. Screen Operation

OPEN_WS
Format OPEN_WS P1 Data Type U
Function The number of the window screen to be opened. This command will not open the specified
screen if it is a normal screen or menu screen. The macro commands following this command
will not be executed until the opened window screen is closed. Also, when a screen's Cycle
macro is waiting for the closing of the window screen opened by this command, that screen
cannot be closed or switched by any means.
P1 (I/C) The number of the window screen to be opened. If the screen number indicates the normal
screen or menu screen, no screen will be opened.
CLOSE_WS
Format CLOSE_WS
Function Closes the window screen that was opened by the macro command OPEN_WS.

14-33 CHAPTER 14 USING MACROS

14.4.15. File Operation

FILE_IO
Format P1 =FILE_IO(P2,P3) Data Type U
Function | Performs the file operation specified by P2 and P3 using default flename and saves the completion code
in P1.
P1 () The word to receive the completion code of the operation. If the completion code is 0, the operation
succeeded; otherwise the operation failed.
P2,P3 P2 specifies the type of file operation. P3 specifies the ID of the data source. The following table describes

(I/C)

how to set P2 and P3.

File Operation P2 P3 Default Filename Format
Save Logged Data (.txt) 1 Data logger ID (0-15) DL<ID>_ <Date> <Time>.txt
Save Logged Data (.csv) 14 DL<ID>_<Date>_<Time>.csv
Save Logged Alarms (.txt) 2 0 AL <Date> <Time>.txt

Save Logged Alarms (.csv) 15 AL_<Date> <Time>.csv

Save Alarm Counts (.txt) 3 0 AC_<Date>_<Time>.txt

Save Alarm Counts (.csv) 16 AC_<Date> <Time>.csv

Save Recipe Data (.txt) 4 Recipe block ID RB<ID>.txt

Save Recipe Data (.csv) 17 (0-15) RB<ID>.csv

Save Recipe Data (.prd) 5 RB<ID>.prd

Print Screen to File 6 Screen number S<ID>_ <Date> <Time>.bmp
(256-color .bmp) (1-7999)

Print Screen to File 7 S<ID>_<Date>_<Time>.bmp
(64K-color .bmp)

Save Logged Operations (.txt) 9 0 OL_<Date> <Time>.txt

Save Logged Operations (.csv) 18 0 OL_<Date> <Time>.csv

Save Logged Data (.Idf) 10 Data logger ID (0-15) DL<ID>_<Date>_ <Time>.ldf
Take Picture (.bmp) 12 USB camera ID (0-3) CAM<ID>_<Date>_<Time>.bmp
Take Picture (.jpg) 13 CAM<ID>_<Date>_<Time>.jpg

Note:

<ID>: ID of the data logger, ID of the recipe block, ID of the USB camera, or number of the screen
<Date>: The date when saving the data.
You can select the formats of <Date> and <Time> on the Custom page in the General Setup dialog box.

<Time>: The time when saving the data.

CHAPTER 14 USING MACROS 14-34

14

FILE_IO_N

Format P1 = FILE_IO_N(P2,P3,P4) Data Type U

Function Performs the file operation specified by P2 and P3 using filename P4 and saves the completion
code in P1.

P1 (1) The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.

P2,P3 (I/C) P2 specifies the type of file operation. P3 specifies the ID of the data source. The following table
describes how to set P2 and P3.

File Operation P2 P3

Save Logged Data (.csv/.txt) 31 Data logger ID (0-15)
Save Logged Alarms (.txt) 32 0

Save Alarm Counts (.txt) 33 0

Save Recipe Data (.csv/.txt) 34 Recipe block ID (0-15)
Save Recipe Data (.prd) 35 Recipe block ID (0-15)
Print Screen to File (256-color .bmp) 36 Screen number (1-7999)
Print Screen to File (64K-color .bmp) 37 Screen number (1-7999)
Save Logged Operations (.txt) 39 0

Save Logged Data (.Idf) 40 Data logger ID (0-15)
Take Picture (.bmp) 42 USB camera ID (0-3)
Take Picture (.jpg) 43 USB camera ID (0-3)

P4 (1) The byte array that contains the specified filename or full pathname. The name must be a valid
Windows pathname with ASCII characters only. The character string must be null terminated
and each character occupies one byte. The maximum length of the string is 127. All the folders
stated in the full pathname must already exist or the file operation will fail.

MKDIR

Format P1 = MKDIR(P2)

Function Creates a new directory with the specified name P2 and saves the result to P1.

P1 () The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.

P2 (1) The byte array that contains the name of the new directory. The name must be a valid directory
name with or without pathname and has only ASCII characters in it.

14-35 CHAPTER 14 USING MACROS

OPEN_FILE

Format P1 = OPEN_FILE(P2,P3) Data Type U
Function Creates or opens a file.
P1 () The starting location of the memory block that is used as a File Information Block to receive the
operation result. The structure of the File Information Block is shown below:
Data Item Data Type/Size Word No.
File handle 32-bit Unsigned Integer Oand 1
File size 32 bit Unsigned Integer 2and 3
Filename Byte array with 81 elements 4 through 44

The file handle is zero if the operation failed.
The file size is zero for a newly created file.

The filename is a null-terminated character string. The maximum allowable size is 80. It is set
when the file is successfully opened.

A File Information Block requires 45 words.

P2 (1) The byte array that contains the filename or the full pathname of the file to be opened. The name
is a null-terminated string and has only ASCII characters in it.
P3 (I/C) Specifies the purpose of opening the file.
Purpose Value
Read 0
Write 1
Append 3
Read CSV File 5
Example 1 $U10 = “test.txt”

$U100 = OPEN_FILE($U10, 0) /* Open the file “test.txt” for the read operation. The double word
$U100 will contain the file handle. The double word $U102 will contain the file size. The byte
array $U104 will contain the filename. */

READ_FILE

Format P1 =READ_FILE(P2,P3,P4) Data Type u

Function Reads P4 bytes from file P2 to buffer P3 and saves the result in P1.

P1 () The word to receive the number of bytes that were actually read. If the operation failed, the
number is 65535 (OXFFFF).

P2 () The file handle of the file to be read.

P3 (1) The memory block to receive the data read from the file.

P4 (1/C) Number of bytes to be read from the file. The maximum you can specify is 32767(0x7FFF).

Example 1 $U200 = READ_FILE($U100,$U150,20) /* Read 20 bytes from the file specified by the file
handle in $U100 and saves the data in the memory block starting from $U150. */

CHAPTER 14 USING MACROS 14-36

14

WRITE_FILE
Format P1 =WRITE_FILE(P2,P3,P4) Data Type U
Function Writes P4 bytes of data in P3 to file P2 and saves the completion code in P1.
P1 (I The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.
P2 (1) The file handle of the file.
P3 () The memory block (or byte array) that stores the data to be written to the file.
P4 (1/C) Number of bytes to be written to the file.
Example 1 $U200=WRITE_FILE($U100,$U150,30) /* Write 30 bytes of data stored in the memory block
starting from $U150 to the file specified by the file handle in $U100. */
CLOSE_FILE
Format P1=CLOSE_FILE(P2,P3) Data Type U
Function Closes an opened file P2 and saves the completion code in P1.
P1 () The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.
P2 (1) The file handle of the file to be closed.
Example 1 $U200=CLOSE_FILE($U100) /* Close the file specified by the file handle in $U100. */
DELETE_FILE
Format P1 =DELETE_FILE(P2) Data Type u
Function Deletes a file named P2 and saves the completion code in P1.
P1 (1) The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.
P2 () The byte array that contains the filename or the full pathname of the file to be deleted. The name
is a null-terminated string and has only ASCII characters in it.
Example 1 $U10 = “test.txt”
$U200 = DELETE_FILE($U10) /* Delete the file “test.txt”. */
RENAME_FILE
Format P1 = RENAME_FILE(P2,P3) Data Type u
Function Renames file P2 with new name P3 and saves the completion code in P1.
P1 () The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.
P2 (1) The byte array that contains the filename or the full pathname of the file to be renamed. The
name is a null-terminated string and has only ASCII characters in it.
P3 () The byte array that contains the new filename. The name is a null-terminated string and has only
ASCII characters in it.
Example 1 $U10 = “test.txt”
$U50 = “new.txt”
$U200 = RENAME_FILE($U10, $U50) /* Rename the file “test.txt” to “new.txt”. */

14-37 CHAPTER 14 USING MACROS

GET_VOL_INFO

Format P1=GET_VOL_INFO(P2,P3) Data Type u

Function Gets the information of volume P2 and saves the result in P3. The completion code is saved in
P1.

P1 (1) The word to receive the completion code of the operation. If the completion code is 0, the
operation succeeded; otherwise the operation failed.

P2 (I/C) The drive ID.

ID Drive

0 Current drive
3 Drive C

4 Drive D

5 Drive E

P3 (1) The starting location of the memory block that is used as a Volume Information Block to receive

the operation result. The structure of the Volume Information Block is shown below:
Data Item Data Type/Size Word No.
Volume name Byte array with 32 elements 0 through 15
Volume size 32-bit Unsigned Integer 16 and 17
Free size 32-bit Unsigned Integer 18 and 19
Drive ID 16-bit Unsigned Integer 20
The volume name is a null-terminated character string. The maximum allowable size is 31
characters.
Both the unit of volume size and the unit of free size are 1024 bytes.
A Volume Information Block requires 21 words.

Example 1 $U100 = GET_VOL_INFO(0, $U0) /* Get the volume information of the current drive. The
volume name will be stored in $UO0 through $U15. The size of the drive will be stored in $U16 and
$U17. The free size of the drive will be stored in $U18 and $U19. The ID of the current drive will
be stored in $U20. */

READ_CSV

Format P1 =READ_CSV(P2,P3,P4) Data Type S/U/SD/UD/F

Function Reads the data in the field of row P3 and column P4 of the CSV file P2 and saves the result in P1.
The word location to receive the value of the specified field. The data type selected for this
command should be the same as the data type of the specified field, or the operation may fail. If

P1 (D
the operation fails for any reason, no value will be written to P1. To know if the operation failed or
not, check the word $S522. When the value of $S522 is non-zero, the operation failed.

P2 (1) The file handle of the file to be read. The file must be a CSV file and is opened with the purpose of
Read CSV File. The delimiter must be TAB.

P3 (/C) The row number of the field to be read. The row counts from 0.

P4 (1/C) The column number of the field to be read. The column counts from 0.
$U10 = "test.csv"

Example 1 $U100 = OPEN_FILE($U10,5) /* Open the file "test.csv" for the READ CSV FILE operation. */
$U200 = READ_CSV($U100,2,3) (F) /* Read the floating point number in the field of row 2 and
column 3 and save the result in $U200 and $U201. */

CHAPTER 14 USING MACROS 14-38

14

READ_CSV_STR

Format P1=READ_CSV_STR (P2,P3,P4)
. Reads the string in the field of row P3 and column P4 of the CSV file P2 and saves the result in

Function P1
The byte array to receive the string in the specified field. The maximal string length that this

P1 (1) command can handle is 128. If the operation fails for any reason, no value will be written to P1. To
know if the operation failed or not, check the word $5522. When the value of $S522 is non-zero,
the operation failed.

P2 (1) The file handle of the file to be read. The file must be a CSV file and is opened with the purpose of
Read CSV File. The delimiter must be TAB.

P3 (I/C) The row number of the field to be read. The row counts from O.

P4 (1/C) The column number of the field to be read. The column counts from O.
$U10 = "test.csv"

Example 1 $U100 = OPEN_FILE($U10,5) /* Open the file "test.csv" for the READ CSV FILE operation. */
$U200 = READ_CSV_STR($U100,2,4) /* Read the string in the field of row 2 and column 4 and
save the result in the byte array starting at $U200. */

14-39 CHAPTER 14 USING MACROS

14.4.16. Comparison

Format P1=P2==P3 Data Type U/S/UD/SD/F/B
Function Sets bit P1 to 1 if P2 is equal to P3, otherwise sets P1 to 0.
P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) == 25.75 (F)
I=
Format P1=P2!=P3 Data Type U/S/UD/SDI/F/B
Function Sets bit P1 to 1 if P2 is not equal to P3, otherwise sets P1 to O.
P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) = -700 (S)
>
Format P1=P2>P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is greater than P3, otherwise sets P1 to 0.
P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) > $U30 (UD)
>=
Format P1=P2>=P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is greater than or equal to P3, otherwise sets P1 to 0.
P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) >= 25.75 (F)
<
Format P1=P2<P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is less than P3, otherwise sets P1 to 0.
P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) < 25.75 (F)
<=
Format P1=P2<=P3 Data Type U/S/UD/SD/F
Function Sets bit P1 to 1 if P2 is less than or equal to P3, otherwise sets P1 to 0.
P1 (I/E) The bit location to save the result.
P2,P3 (I/E/C/AE) The operands.
Example 1 $U3.3 = ($U10 + $U20) <= 25.75 (F)

CHAPTER 14 USING MACROS 14-40

14

14.4.17. String Operation

STRCPY
Format STRCPY(P1, P2)
Function Copies the string in P2 to P1.
P1 (I The byte array that receives a copy of the string in P2. The byte array must be large enough to
hold the string and the null terminator.
P2 (1) The source, i.e. the byte array that contains the null-terminated string to be copied.
Example 1 $U10 = “ABCDE”
STRCPY($U20, $U10)
After the command STRCPY is executed, the byte array $U20 contains the string “ABCDE” and
the memory content is like the following:
Word Low Byte High Byte
$U20 ‘A '‘B'
$U21 ‘C' ‘D'
$U22 'E' 0
Example 2 $U10 ="12"
STRCPY($U20, $U10)
After the command STRCPY is executed, the byte array $U20 contains the string “12” and the
memory content is like the following:
Word Low Byte High Byte
$U20 "1 '2'
$U21 0 Undefined
STRCAT
Format STRCAT(P1, P2)
Function Appends string in P2 to string in P1.
P1 (1) The byte array that contains a null-terminated string to which the command appends P2. The byte
array must be large enough to hold both strings and the null terminator.
P2 () The byte array that contains a null-terminated string to be appended to the string in P1.
Example 1 $U10 = “ABC”
$U20 =“12345"
STRCAT($U10, $U20) /* After this command is executed, the byte array $U10 contains
“ABC12345" */
Example 2 $U100 = “C:\MyFolder\”

$U130 = “Test”
$U140 = “.txt”
STRCAT($U100, $U130)

STRCAT($U100, $U140) /* After this command is executed, the byte array $U100 contains
“C:\MyFoldern\Test.txt” */

14-41 CHAPTER 14 USING MACROS

STRLEN

Format P1 =STRLEN(P2)
Function Gets the length of string P2 and saves the result in P1.
P1(I) The word to receive the result.
P2 () The byte array that stores the null-terminated string.
Example 1 $U10 = “ABC”
$U20 = STRLEN($U10) /* After this command is executed, the value of $U20 is 3. */
STRCMP
Format P1=STRCMP(P2,P3)
Function Compares strings P2 and P3 lexicographically and saves a value indicating their relationship in
P1.
P1 () The value of comparison result.
Value Description
0 P2 and P3 are identical.
1 P2 is greater than P3.
OXFFFF P2 is less than P3.
P2,P3 (1) The byte array that contains a null-terminated string to compare.
Example 1 $U10 = “ABC”
$U20 = “abc”
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is OXFFFF*/
Example 2 $U10 = “XYZ"
$U20 = “ABC”
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is 1*/
Example 3 $U10 = “ABC”
$U20 = “ABC”

$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is 0*/

CHAPTER 14 USING MACROS 14-42

14

STRICMP
Format P1 = STRICMP(P2,P3)
Function Compares lowercase version of strings P2 and P3 lexicographically and saves a value indicating
their relationship in P1.
P1 () The value of comparison result.
Value Description
0 P2 and P3 are identical.
1 P2 is greater than P3.
OXFFFF P2 is less than P3.
P2,P3 (1) The byte array that contains a null-terminated string to compare.
Example 1 $U10 = “ABC”
$U20 = “abc”
$U30 = STRICMP($U10, $U20) /* After this command is executed, $U30 is 0*/
Example 2 $U10 = “XYZ"
$U20 = “ABC”
$U30 = STRICMP($U10, $U20) /* After this command is executed, $U30 is 1*/
Example 3 $U10 = “ABC”
$U20 = “ABC”
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is OXFFFF*/

14-43 CHAPTER 14 USING MACROS

STRNCMP

Format P1=STRNCMP(P2,P3,P4)
Function Lexicographically compares, at most, the first P4 characters in strings P2 and P3 and saves a
value indicating the relationship between the substrings in P1.
P1 () The value of comparison result.
Value Description
0 P2's substring and .P3's substring are identical
1 P2's substring is greater than P3's substring .
OxXFFFF P2's substring is less than P3's substring .
Note: The comparison ends if a terminating null character is reached in either string before P4
characters are compared. If the strings are equal when a terminating null character is reached in
either string before P4 characters are compared, the shorter string is less.
The characters from 91 to 96 in the ASCII table (T, '\', T, ", '_', and ") will evaluate as less than
any alphabetic character.
P2,P3 (1) The byte array that contains a null-terminated string to compare.
P4 (1/C) The number of characters to compare.
Example 1 $UL0 = “XYZ"
$U20 = “XYZAB”
$U30 = STRNCMP($U10, $U20,4) /* After this command is executed, $U30 is OxFFFF*/
Example 2 $U10 = “ABZ"
$U20 = “ABC”
$U30 = STRNCMP($U10, $U20,2) /* After this command is executed, $U30 is 0*/
Example 3 $U10 = “AXC”
$U20 = “ABC”
$U30 = STRNCMP($U10, $U20,3) /* After this command is executed, $U30 is 1*/
$U30 = STRCMP($U10, $U20) /* After this command is executed, $U30 is OXFFFF*/
STRCHR
Format P1 =STRCHR(P2,P3)
Function Finds the first occurrence of a character P3 in a string P2 and saves a search result in value
indicating the position of the found character in P1.
P1 () The value of search result. If the character P3 is not found in P2, the result value is
OxFFFF.Otherwise, the result value is the index to the first occurrence of character P3 in a string
P2.
P2 (1) The byte array that contains a null-terminated source string.
P3 (1/C) The byte that contains a character code to be located.
Example 1 $U10 = “The quick brown dog jumps over the lazy fox.”

$U20 = 0x72 /* The ASCII code of character 'r' */
$U30 = STRCHR($U10, $U20) /* After this command is executed, $U30 is 11*/

CHAPTER 14 USING MACROS 14-44

14

NUM2STR
Format P1 =NUM2STR(P2,P3) Data Type u/ub
Function Converts the number in P2 to a string with P3 characters and saves the result in P1.
P1 () The byte array that stores the result.
P2 (1/C) The number or the location that holds the number to be converted.
P3 (1/C) Specifies the exact number of characters that the result should have. If the number of digits of P2
is less than P3, the result is padded on the left with zeros. If the number of digits of P2 exceeds
P3, the higher digits are truncated. If P3 is 0, there is no limitation on the length of the result.
Example 1 $U120 =123
$U100 = NUM2STR($U120, 0) (U) /* After this command is executed, the byte array $U100
contains “123". */
Example 2 $U120 = 1234567 (UD)
$U100 = NUM2STR($U120, 10) (UD) /* After this command is executed, the byte array $U100
contains “0001234567". */
Example 3 $U120 = 1234567 (UD)
$UL00 = NUM2STR($U120, 5) (UD) /* After this command is executed, the byte array $U100
contains “34567”. */
TIME2STR
Format P1=TIME2STR(P2) Data Type U
Function Converts the current system time to a string using the format specified by P2 and saves the result
in P1.
P1 (1) The byte array that stores the result.
P2 (I/C) Specifies the desired conversion format.
Format P2 Value Remark
hhmmss 0 hh: hour(00-23); mm: minute(00-59); ss: second(00-59)
hhmm 1 hh, mm: same as above
Example 1 $U10 = TIME2STR(0) /* Assume that the current system time is 12:30:59. After this command is
executed, the byte array $U10 contains “123059". */
DATE2STR
Format P1 =DATE2STR(P2) Data Type U
Function Converts the current system date to a string using the format specified by P2 and saves the result
in P1.
P1 (I) The byte array that stores the result.
P2 (I/C) Specifies the desired conversion format.
Format P2 Value Remark
YYMMDD 0 YY: year (00-99); MM: month(01-12); DD: day(01-31)
YYMM 1 YY, MM: same as above
YYMMMDD | 2 YY: year (00-99); MMM: month(JAN-DEC); DD: day(01-31)
YYMMM 3 YY, MMM: same as above
Example 1 $U10 = DATE2STR(0) /* Assume that the current system date is December 7, 2008. After this
command is executed, the byte array $U10 contains “081207". */
Example 2 $U20 = DATE2STR(3) /* Assume that the current system date is December 31, 2008. After this

command is executed, the byte array $U20 contains “O8DEC”. */

14-45 CHAPTER 14 USING MACROS

TD2STR

Format P1=TD2STR(P2) Data Type U
Function Converts the current system time and date to a string using the format specified by P2 and saves
the result in P1.
P1 (1) The byte array that stores the result.
P2 (I/C) Specifies the desired conversion format.
Format e Remark
Value
YYMMDD_hhmmss 0 YY: year (00-99); MM: month(01-12); DD: day(01-31)
hh: hour(00-23); mm: minute(00-59) ; ss: second(00-59)
YYMMMDD_hhmmss | 1 YY, DD, hh, mm, ss: same as above
MMM: month(JAN-DEC)
YYMMDD_hhmm YY, DD, hh, mm: same as above; MM: month(01-12)
YYMMMDD_hhmm YY, DD, hh, mm: same as above;
MMM: month(JAN-DEC)
Example 1 $U10 = TD2STR(0) /* Assume that the current system date is December 7, 2008 and the current
system time is 15:18:30. After this command is executed, the byte array $U10 contains
“081207_151830". */
Example 2 $U20 = TD2STR(3) /* Assume that the current system date is December 31, 2008 and the current
system time is 13:30:00. After this command is executed, the byte array $U20 contains
“08DEC31_1330". */
12A
Format P1=12A(P2,P3) Data Type U/S/UD/SD
Function Converts the integer number in P2 to a string and saves the result in P1. The string is generated
according to the format specified by P3 and P4.
P1(I) The byte array that stores the result. The result is a null terminated string.
P2 (1/C) The integer number or the location that holds the integer number to be converted.
P3 (1/C) Specifies the maximum number of digits the string can have.
P4 (1/C) Specifies where to insert a decimal point in the string. A decimal point is inserted to the left of the
nth digit when P4 is n. No decimal point is inserted when P4 is 0.
Example 1 $U120 =123
$U100 = I12A($U120, 5, 0) /* After this command is executed, the byte array $U100 contains
“123". */
Example 2 $U120 = 1234567 (UD)
$U100 = 12A($U120, 6, 2) (UD) /* After this command is executed, the byte array $U100 contains
“2345.67". */
Example 3 $U120 = -12345 (S)

$U100 = 12A($U120, 5, 1) (UD) /* After this command is executed, the byte array $U100 contains
“-1234.5". */

CHAPTER 14 USING MACROS 14-46

A2l

Format P1 = A2I(P2,P3,P4) Data Type U/S/UD/SD

Function Converts the string P2 to an integer value and saves the result in P1.

P1 (1) The location that stores the result. The result is 0 when there is any conversion error.

P2 (1) The byte array that holds the string to be converted.

P3 (1/C) Specifies the length of the string. It is allowed to specify 0 for P3. When P3 is 0, the string must be
a null terminated string.

P4 (1/C) Specifies how many fractional digits in the string are to be converted.

Example 1 $U120 = 123"
$U100 = A21($U120, 0, 0) /* After this command is executed, the value in word $U100 is 123. */

Example 2 $U120 = “1234567"
$U100 = A21($U120, 6, 0) (UD) /* After this command is executed, the value in double word
$U100 is 123456. */

Example 3 $U120 = *“-123.45"
$U100 = A21($U120, 0, 2) (S) /* After this command is executed, the value in word $U100 is
-12345. */

F2A

Format P1=F2A(P2,P3) Data Type F

Function Converts the floating point number in P2 to a string and saves the result in P1. The string is
generated according to the format specified by P3 and P4.

P1(I) The byte array that stores the result. The result is a null terminated string.

P2 (1/C) The floating point number or the location that holds the floating point number to be converted.

P3 (1/C) Specifies the number of integral digits the string can have.

P4 (1/C) Specifies the number of fractional digits the string can have.

Example 1 $U120 = 123.45 (F)
$U100 = F2A($U120, 5, 2) /* After this command is executed, the byte array $U100 contains
“123.45". */

Example 2 $U120 = 1234 (F)
$U100 = F2A($U120, 6, 2) (UD) /* After this command is executed, the byte array $U100 contains
“1234.00". */

Example 3 $U120 =-1234.5 (S)
$liJ;g2 ;”F*Z/A($U120, 5, 1) (UD) /* After this command is executed, the byte array $U100 contains

14-47 CHAPTER 14 USING MACROS

A2F

Format P1 = A2F(P2,P3) Data Type F

Function Converts the string P2 to a floating point number and saves the result in P1.

P1 () The location that stores the result. The result is 0 when there is any conversion error.

P2 (1) The byte array that holds the string to be converted.

P3 (1/C) Specifies the length of the string. It is allowed to specify 0 for P3. When P3 is 0, the string must be
a null terminated string.

Example 1 $U120 =“123.4”
$U100 = A2F($U120, 0) /*The value of the floating point number in double word $U100 is 123.4. */

Example 2 $U120 =“1234567"
$UL100 = A2F($U120, 6) (UD) /* The value of the floating point number in double word $U100 is
123456. */

Example 3 $U120 = *-123.45"
$U100 = A2F($U120, 0) (S) /* The value of the floating point number in double word $U100 is
-123.45. */

CHAPTER 14 USING MACROS 14-48

14

14.4.18. Run Operation

RUN

Format RUN(P1)

Function Runs the executable P1 which is on the same PC. This command is only available for the runtime
software on the PC.

P1 (I/A) The name of the executable to be run.

Example 1 RUN "ABC.exe" /* Run the program ABC */

Example 2 $UL0 = "XYZ.bat"

RUN $U10 /* Run the batch file XYZ */
RUNW

Format P1 = RUNW(P2)

Function Runs the executable P2 which is on the same PC and saves the result in P1. Note that the macro
command following this one will not be executed until the program is closed. This command is
only available for the runtime software on the PC.

P1 (1) The word to receive the result.

P2 (I/A) The name of the executable to be run.

Example 1 $U10 = RUNW "ABC.exe" /* Run the program ABC and use $U10 to get the result. */

IF $U10 == 0 /* If the result is 0 then run the batch file XYZ. */
$U20 = "XYZ.bat"
$UL1 = RUNW $U20 /* Run the batch file XYZ. */

ENDIF

14-49 CHAPTER 14 USING MACROS

14.4.19. Print Operation

PRINT
Format P1 =PRINT(P2,P3) Data Type U
Function Sends P3 bytes of data stored in byte array P2 to the printer and saves the completion code in P1.
P1 () The word to receive the completion code of the operation. The following table describes the meanings
of the completion codes.
Code | Description
0 Succeeded
1 Printer not ready
3 System error
4 Printer busy
7 No printer specified
P2 () The starting location of the byte array that stores the data to be sent to the printer.
P3 (I/C) The length in byte of the data to be sent to the printer.
Example 1 $U10 = "This is a test."
$U20 = PRINT($U10, 15) /* Send the string “This is a test.” to the printer. */
$U10 =10
$U20 = PRINT($U10, 1) /* Send the line-feed character to the printer */
$UL0 =12
$U20 = PRINT($U10, 1) /* Send the form-feed character to the printer */
Example 2 $U10 = 0x401b /* ESC, '@" */

$U20 = PRINT($U10, 2) /* Send the initialization command to the EPSON printer */

PRINT_SCREEN

Format

P1 = PRINT_SCREEN(P2,P3) Data Type U

Function

Prints screen P2 and saves the result in P1.

P1 ()

The word to receive the completion code of the operation. The following table describes the meanings
of the completion codes.

Code | Description

Succeeded

Printer not ready

Invalid screen number

System error

Printer busy

System busy

O WIN|FL|O

Improper use of this command (See Note)

7 No printer specified

Note: This command can only be used in the following types of macros: Main Macro, Event Macro,
Time Macro, and Cycle Macro.

P2 (I/C)

The number of the screen to be printed. The printed area is specified in the Screen Properties dialog
box.

P3 (I/C)

Reserved for future use. Must be 0.

Example 1

$UO = PRINT_SCREEN(28, 0) /* Print screen #28*/

CHAPTER 14 USING MACROS 14-50

14

BLANK

Format P1 =BLANK (P2) Data Type u

Function Blanks the print buffer P1, i.e. makes the print buffer P1 contain only blank characters.

P1 () The print buffer to be blanked. The print buffer is a byte array. You should always blank a print
buffer before printing strings to it.

The size of the print buffer. The unit is byte (one-byte character).

P2 (I/C) For example, if the size of a print buffer is 40, it has 20 words and can contain up to 40 one-byte
characters.

Example 1 BLANK($U100, 80) /* Blank the print buffer starting at $U100 with a length of 40 words. */

P2B

Format P1=P2B (P2,P3) Data Type u

Function Prints the null-terminated string P1 to the print buffer P2 at the specified byte position P3.

P1 (1) The byte array that holds the string to be printed.

P2 (1) The byte array that is used as a print buffer to accept the string P1.

P3 (IIC) The byte position in the print buffer to put the string. The byte position counts from 0.

For example, to print a string at the beginning of the print buffer, set P3 to 0.

BLANK($U100, 20) /* Blank the print buffer. */

$U10 = “Weight:”

P2B($U100, $U10, 0) /* Print the string “Weight:” at the position of byte 0 of the print buffer. */
$UL0 = 12A(1234, 2) /* The byte array $U10 will hold the string “12.34” after this command is

Example 1 executed. */

P2B($U100, $U10, 8) /* Print the string “12.34” at the position of byte 8 of the print buffer. */

$U10 = “kg”

P2B($U100, $U10, 14) /* Print the string “kg” at the position of byte 14 of the print buffer. */

PRINT($U100, 20) /* Print string “Weight: 12.34 kg” in the print buffer to the real printer. */
P2B_R

Format P1=P2B_R (P2,P3) Data Type U

Function Prints the null-terminated string P1 to the print buffer P2. The string is right aligned with the byte
position P3.

P1 () The byte array that holds the string to be printed.

P2 () The byte array that is used as a print buffer to accept the string P1.

The byte position in the print buffer that the last characters of the string is placed. The byte position

P3 (IIC) counts from O.

For example, to print a string with 6 characters at the beginning of the print buffer, set P3to 5 as the
last character of the string should be placed at the position of byte 5.

BLANK($U100, 20) /* Blank the print buffer. */

$U10 = “Weight:”

P2B_R($U100, $U10, 6) /* Print the string “Weight:” to the print buffer and align the string right with
the position of byte 6. */

$U10 = 12A(1234, 2) /* The byte array $U10 will hold the string “12.34” after this command is
executed. */

Example 1 . N .,
P2B_R($U100, $U10, 12) /* Print the string “12.34” to the print buffer and align the string right with
the position of byte 12. */
$U10 = "kg”

P2B_R($U100, $U10, 15) /* Print the string “kg” to the print buffer and align the string right with the
position of byte 15. */
PRINT($U100, 20) /* Print string “Weight: 12.34 kg” in the print buffer to the real printer. */

14-51 CHAPTER 14 USING MACROS

14.4.20. Sound Operation

SOUND
Format SOUND (P1,P2,P3) Data Type u
Function Plays the sound P1.
P1 (1/C) The identifier of the sound to be played.
Note: The sounds and their identifiers are defined in the sound table of the panel application.
The number of times you want the sound to be played. If you want the specified sound to be played
P2 (I/C) ;
just once, set P2 to 1.
P3 (I/C) The break time between two consecutive plays. The time unit is 100 ms (0.1 second). If you do not
want any break between two plays, set P3 to 0.
SOUND(10, 5, 3) /* Play the sound #10 5 times with a break of 0.3 second between two
Example 1 . .
consecutive plays. */
STOP_SOUND
Format STOP_SOUND
Function Stops playing the current sound.

Example 1 STOP_SOUND /* Stop playing the current sound.*/

CHAPTER 14 USING MACROS 14-52

	14.1. Types of Macros
	14.2. Working with Macros
	14.2.1. Creating Macros
	14.2.2. Opening and Closing Macros
	14.2.3. Naming a macro
	14.2.4. Deleting a macro
	14.2.5. Saving and Exporting Macros
	14.2.6. Macro Settings in the Dialog

	14.3. Writing Macros
	14.3.1. Macro Editor Window
	14.3.2. Macro Command Properties Tool Window

	14.4. Macro Commands and Examples
	14.4.1. Macro Notations and Terminology
	14.4.2. Data Transfer
	Assignment (=)
	Logical NOT (= !)
	" "
	MOV
	SETM

	14.4.3. Arithmetic Operation
	Addition (+)
	Subtraction (-)
	Multiplication (*)
	Division (/)
	Modulus (%)

	14.4.4. Logical Operation
	Bitwise Inclusive OR (|)
	Bitwise AND (&)
	Bitwise Exclusive OR (^)
	Left Shift (<<)
	Right Shift (>>)
	Logical AND (&&)
	Logical OR (||)

	14.4.5. Calculation
	MAX
	MIN
	BMAX
	BMIN
	SUM
	XSUM
	SWAP

	14.4.6. Data Conversion
	BCD
	BIN
	DW
	W
	B2W
	W2B
	A2X
	X2A
	W2F
	D2F
	F2W
	F2D
	EXTRACT_BIT

	14.4.7. Conditional Operation
	IF ==
	IF !=
	IF >
	IF >=
	IF <
	IF <=
	IF &
	IF !&
	IF <bit>
	IF !<bit>
	ELIF ==
	ELIF !=
	ELIF >
	ELIF >=
	ELIF <
	ELIF <=
	ELIF &
	ELIF !&
	ELIF <bit>
	ELIF !<bit>
	ELSE
	ENDIF

	14.4.8. Program Control
	JMP
	<label>
	JMP ==
	JMP !=
	JMP >
	JMP >=
	JMP <
	JMP <=
	JMP &
	JMP !&
	JMP <bit>
	JMP !<bit>
	CALL
	RET
	FOR
	NEXT
	STOP
	END

	14.4.9. Timer Operation
	SET_T
	STOP_T
	WAIT_T

	14.4.10. Keypad Operation
	KB_MCR
	KPD_TEXT

	14.4.11. Recipe Operation
	RB2ROM
	ROM2RB
	REF_RCP_OBJ

	14.4.12. Communication Operation
	EN_LINK
	LINK_STS

	14.4.13. System Service
	GET_RTC
	SET_RTC
	SYS

	14.4.14. Screen Operation
	OPEN_WS
	CLOSE_WS

	14.4.15. File Operation
	FILE_IO
	FILE_IO_N
	MKDIR
	OPEN_FILE
	READ_FILE
	WRITE_FILE
	CLOSE_FILE
	DELETE_FILE
	RENAME_FILE
	GET_VOL_INFO
	READ_CSV　
	READ_CSV_STR　

	14.4.16. Comparison
	==
	!=
	>
	>=
	<
	<=

	14.4.17. String Operation
	STRCPY
	STRCAT
	STRLEN
	STRCMP
	STRICMP
	STRNCMP
	STRCHR
	NUM2STR
	TIME2STR
	DATE2STR
	TD2STR
	I2A
	A2I
	F2A
	A2F

	14.4.18. Run Operation
	RUN
	RUNW

	14.4.19. Print Operation
	PRINT
	PRINT_SCREEN
	BLANK
	P2B
	P2B_R

	14.4.20. Sound Operation
	SOUND
	STOP_SOUND

